In this research, an experimental study was conducted to high light the impact of the exterior shape of a cylindrical body on the forced and free convection heat transfer coefficients when the body is hold in the entrance of an air duct. The impact of changing the body location within the air duct and the air speed are also demonstrated. The cylinders were manufactured with circular, triangular and square sections of copper for its high thermal conductivity with appropriate dimensions, while maintaining the surface area of all shapes to be the same. Each cylinder was heated to a certain temperature and put inside the duct at certain locations. The temperature of the cylinder was then monitored. The heat transfer coefficient were then cal
... Show MoreRecovery of time-dependent thermal conductivity has been numerically investigated. The problem of identification in one-dimensional heat equation from Cauchy boundary data and mass/energy specification has been considered. The inverse problem recasted as a nonlinear optimization problem. The regularized least-squares functional is minimised through lsqnonlin routine from MATLAB to retrieve the unknown coefficient. We investigate the stability and accuracy for numerical solution for two examples with various noise level and regularization parameter.
The Caputo definition of fractional derivatives introduces solution to the difficulties appears in the numerical treatment of differential equations due its consistency in differentiating constant functions. In the same time the memory and hereditary behaviors of the time fractional order derivatives (TFODE) still common in all definitions of fractional derivatives. The use of properties of companion matrices appears in reformulating multilevel schemes as generalized two level schemes is employed with the Gerschgorin disc theorems to prove stability condition. Caputo fractional derivatives with finite difference representations is considered. Moreover the effect of using the inverse operator which tr