Geomechanical modelling and simulation are introduced to accurately determine the combined effects of hydrocarbon production and changes in rock properties due to geomechanical effects. The reservoir geomechanical model is concerned with stress-related issues and rock failure in compression, shear, and tension induced by reservoir pore pressure changes due to reservoir depletion. In this paper, a rock mechanical model is constructed in geomechanical mode, and reservoir geomechanics simulations are run for a carbonate gas reservoir. The study begins with assessment of the data, construction of 1D rock mechanical models along the well trajectory, the generation of a 3D mechanical earth model, and running a 4D geomechanical simulation using a two-way coupling simulation method, followed by results analysis. A dual porosity/permeability model is coupled with a 3D geomechanical model, and iterative two-way coupling simulation is performed to understand the changes in effective stress dynamics with the decrease in reservoir pressure due to production, and therefore to identify the changes in dual-continuum media conductivity to fluid flow and field ultimate recovery. The results of analysis show an observed effect on reservoir flow behaviour of a 4% decrease in gas ultimate recovery and considerable changes in matrix contribution and fracture properties, with the geomechanical effects on the matrix visibly decreasing the gas production potential, and the effect on the natural fracture contribution is limited on gas inflow. Generally, this could be due to slip flow of gas at the media walls of micro-extension fractures, and the flow contribution and fracture conductivity is quite sufficient for the volume that the matrixes feed the fractures. Also, the geomechanical simulation results show the stability of existing faults, emphasizing that the loading on the fault is too low to induce fault slip to create fracturing, and enhanced permeability provides efficient conduit for reservoir fluid flow in reservoirs characterized by natural fractures.
A novel mixed natural coagulant has been developed to remove sewage pollutants and heavy metals from Qanat- al- Jayesh by using low cost adsorbent natural materials. In these materials, significant interaction contains Arabic gum mixed with extracted silica from rice husk ash (natural coagulants) by the Batch device approach, using two variables, pH values ranging from 5-8 and contact times between 0.25-5 hrs. All wastewater samples were collected after treatment by adsorbents and examined for determination of residual heavy metal concentrations: Pb, Ni, Zn and Cu by atomic absorption spectroscopy (AAS), turbidity, pH, total dissolved salts (TDS), electrical conductivity (EC) and total salinity (TS). The results obtained indicate Th
... Show MoreSoftware-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show MoreThis work proposes a new video buffer framework (VBF) to acquire a favorable quality of experience (QoE) for video streaming in cellular networks. The proposed framework consists of three main parts: client selection algorithm, categorization method, and distribution mechanism. The client selection algorithm was named independent client selection algorithm (ICSA), which is proposed to select the best clients who have less interfering effects on video quality and recognize the clients’ urgency based on buffer occupancy level. In the categorization method, each frame in the video buffer is given a specific number for better estimation of the playout outage probability, so it can efficiently handle so many frames from different video
... Show MoreMCM-48 zeolites have unique properties from the surfaces and structure point of view as it’s shown in the results ,and unique and very sensitive to be prepared, have been experimentally prepared and utilized as a second-generation/ acid - catalyst for esterification reactions of oleic acid as a model oil for a free fatty acid source with Ethanol. The characterization of the catalyst used in the reaction has been identified by various methods indicating the prepared MCM-48 is highly matching the profile of common commercial MCM-48 zeolite. The XRF results show domination of SiO2 on the chemical structure with 99.1% and agreeable with the expected from MCM-48 for it's of silica-based, and the SEM results show the cubic c
... Show MoreAn aircraft's landing stage involves inherent hazards and problems associated with many factors, such as weather, runway conditions, pilot experiences, etc. The pilot is responsible for selecting the proper landing procedure based on information provided by the landing console operator (LCO). Given the likelihood of human decisions due to errors and biases, creating an intelligent system becomes important to predict accurate decisions. This paper proposes the fuzzy logic method, which intends to handle the uncertainty and ambiguity inherent in the landing phase, providing intelligent decision support to the pilot while reducing the workload of the LCO. The fuzzy system, built using the Mamdani approach in MATLAB software, considers critical
... Show More