Statistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in categorical outcomes, with the overarching goal of supervised learning being to enhance models capable of predicting class labels based on input features. This review endeavors to furnish a concise, yet insightful reference manual on machine learning, intertwined with the tapestry of statistical learning theory (SLT), elucidating their symbiotic relationship. It demystifies the foundational concepts of classification, shedding light on the overarching principles that govern it. This panoramic view aims to offer a holistic perspective on classification, serving as a valuable resource for researchers, practitioners, and enthusiasts entering the domains of machine learning, artificial intelligence and statistics, by introducing concepts, methods and differences that lead to enhancing their understanding of classification methods.
This research is mostly concerned of exploration analysis of a random sample of data from Al-sadder hospital. We examine duration of hospital stay (DHS) and investigate any significant difference in duration between sex, age groups, occupation, patients’ condition at admission, and patients’ condition at discharge
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreCodes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show MoreThe objective of the study was to identify the effect of the use of the Colb model for the students of the third stage in the College of Physical Education and Sports Sciences, University of Baghdad,As well as to identify the differences between the research groups in the remote tests in learning skills using the model Colb.The researcher used the experimental method and included the sample of the research on the students of the third stage in the College of Physical Education and Sports Science / University of Baghdad by drawing lots, the third division (j) was chosen to represent the experimental group,And the third division (c) to represent the control groupafter the distribution of the sample splitting measure according to the Colb mode
... Show MoreThe current research aims to identify the effect of the program to develop the skill of friendship among kindergarten children, as well as the scope of the impact of the program on the sample. To achieve the objectives of the research, the researcher hypothesizes there is no significant difference between the average scores of the sample members on the friendship skill scale for the dimensional scale according to the experimental and control group. The research sample consisted of (60) girl and boy with age ranges (4-6) who were randomly selected from the Kindergarten Unity at Baghdad city/ Rusafa 1. The children were distributed into an experimental and control group, each group consists of (30) girl and boy. The two groups were chosen
... Show MoreThe use of Conservatism significant impacts on the financial statements and thus on financial reporting which is produced by these lists so Rate Some of the professionals that the principle of accounting while Rate of others as a constraint, and brought this category based on the uses of this restriction sometimes used the accountant this restriction and especially with the uncertainties in the Sometimes it may collide with some of the cases in which the accountant may be forced to leave in custody as a result of emergence of economic events that gave rise to rights or future commitments should be disclosed.
The emergence in custody mainly was due to the uncertainty and its essence is to report on a
... Show MoreThe present analysis targets to recognize the influence of the separate teaching approach on the accomplishment of grammar for scholars of the College of Islamic Sciences. The target of attaining this target led the investigations developing the subsequent null theories: 1. No statistically substantial variance is happened at the consequence level of 0.05 between the mean scores of the scholars in the investigational category who learnt consistent with the separate learning approach and the mean scores of the scholars in the control category who learnt in the conventional method in the accomplishment test. 2. No statistically substantial variance has been observed at the consequence level of 0.05 in the mean differences between the
... Show More