In this paper, the exact solutions of the Schlömilch’s integral equation and its linear and non-linear generalized formulas with application are solved by using two efficient iterative methods. The Schlömilch’s integral equations have many applications in atmospheric, terrestrial physics and ionospheric problems. They describe the density profile of electrons from the ionospheric for awry occurrence of the quasi-transverse approximations. The paper aims to discuss these issues.
First, the authors apply a regularization meth
The aim of this article is to study the dynamical behavior of an eco-epidemiological model. A prey-predator model comprising infectious disease in prey species and stage structure in predator species is suggested and studied. Presumed that the prey species growing logistically in the absence of predator and the ferocity process happened by Lotka-Volterra functional response. The existence, uniqueness, and boundedness of the solution of the model are investigated. The stability constraints of all equilibrium points are determined. The constraints of persistence of the model are established. The local bifurcation near every equilibrium point is analyzed. The global dynamics of the model are investigated numerically and confronted with the obt
... Show MoreThis paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.
Artificial pancreas is simulated to handle Type I diabetic patients under intensive care by automatically controlling the insulin infusion rate. A Backstepping technique is used to apply the effect of PID controller to blood glucose level since there is no direct relation between insulin infusion (the manipulated variable) and glucose level in Bergman’s system model subjected to an oral glucose tolerance test by applying a meal translated into a disturbance. Backstepping technique is usually recommended to stabilize and control the states of Bergman's class of nonlinear systems. The results showed a very satisfactory behavior of glucose deviation to a sudden rise represented by the meal that increase the blood glucose
... Show More
Thin films of CuPc of various thicknesses (150,300 and 450) nm have been deposited using pulsed laser deposition technique at room temperature. The study showed that the spectra of the optical absorption of the thin films of the CuPc are two bands of absorption one in the visible region at about 635 nm, referred to as Q-band, and the second in ultra-violet region where B-band is located at 330 nm. CuPc thin films were found to have direct band gap with values around (1.81 and 3.14 (eV respectively. The vibrational studies were carried out using Fourier transform infrared spectroscopy (FT-IR). Finally, From open and closed aperture Z-scan data non-linear absorption coefficient and non-linear refractive index have been calculated res
... Show MoreThis paper proposes and studies an ecotoxicant system with Lotka-Volterra functional response for predation including prey protective region. The equilibrium points and the stability of this model have been investigated analytically both locally and globally. Finally, numerical simulations and graphical representations have been utilized to support our analytical findings
The main objective of this paper is to designed algorithms and implemented in the construction of the main program designated for the determination the tenser product of representation for the special linear group.
In this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasi
... Show MoreIn this research, a simple experiment in the field of agriculture was studied, in terms of the effect of out-of-control noise as a result of several reasons, including the effect of environmental conditions on the observations of agricultural experiments, through the use of Discrete Wavelet transformation, specifically (The Coiflets transform of wavelength 1 to 2 and the Daubechies transform of wavelength 2 To 3) based on two levels of transform (J-4) and (J-5), and applying the hard threshold rules, soft and non-negative, and comparing the wavelet transformation methods using real data for an experiment with a size of 26 observations. The application was carried out through a program in the language of MATLAB. The researcher concluded that
... Show MoreObjective(s): This study was conducted to deal with the importance and effect of various variables which might
have influence in hydrocephaly occurrence.
Methodology: A retrospective design was performed and continued for 4 months. It included 89 nonrandomized
consecutive samples collected from the Early Detection of Childhood Disabilities Center (E.D.C.D.C.)
Duhok. The population involved was the entire cases of both sexes that attended the centre during the period from
1
st.Jan, 1998 to 30th. Dec. 2008 with final diagnosis of hydrocephaly. Patients’ records from the centre were used to
collect data.
Results: Hydrocephaly has been recognized as a public health problem in Duhok province, Iraqi Kurdistan region,<