Preferred Language
Articles
/
lxdBA5ABVTCNdQwCSYLS
An Efficient Shrinkage Estimator for the Parameters of Simple Linear Regression Model
...Show More Authors

Publication Date
Thu Jun 02 2011
Journal Name
Ibn Al-haithem Journal For Pure And Applied Sciences
On modified pr-test double stage shrinkage estimators for estimate the parameters of simple linear regression model
...Show More Authors

Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Modified Thompson –Type Testimators for the Parameters of Simple Linear Regression Model
...Show More Authors

 Dens itiad ns vcovadoay fnre Dec2isco0D,ia asrn2trcds4 fenve ns 6ocfo ts ida%n2notd, rasr sedno6t(a asrn2trcd fnre sc2a 2cynwnvtrnco co nrs wcd2 /nt sedno6t(a fan(er wtvrcd ﯿ)ﺔ mh         Dens r,ia cw asrn2trcds et/a laao vcosnyaday wcd asrn2trno( rea itdt2arads ﻘ cw sn2i%a %noatd da(dassnco 2cya%4 feao t idncd asrn2tra cw rea itdt2arad /t%ua )ﻘm ns t/tn%tl%a4 st, ﻘxh Dens ﻘx ets laao dawadday no srtrnsrnvt% %nradtrudas ts (uass icnor tlcur rea itdt2arad ﻘh         Dea aMidassncos wcd Snts4 Oato -9utday 8ddcd )O-8m toy .a%trn/a 8wwnvnaov, cw rea idcicsay asrn2trcds tda clrtnoayh 1u2adnvt% dasu%rs tda idc/nyay feao rea

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Efficient Single Stage Shrinkage Estimator for the Scale parameter of Inverted Gamma Distribution
...Show More Authors

 The present  paper agrees  with estimation of scale parameter θ of the Inverted Gamma (IG) Distribution when the shape parameter α is known (α=1), bypreliminarytestsinglestage shrinkage estimators using  suitable  shrinkage weight factor and region.  The expressions for the Bias, Mean Squared Error [MSE] for the proposed estimators are derived. Comparisons between the considered estimator with the usual estimator (MLE) and with the existing estimator  are performed .The results are presented in attached tables.

View Publication Preview PDF
Crossref
Publication Date
Sun Jan 14 2024
Journal Name
Journal Of Al-rafidain University College For Sciences ( Print Issn: 1681-6870 ,online Issn: 2790-2293 )
Using Nonparametric Procedure to Develop an OCMT Estimator for Big Data Linear Regression Model with Application Chemical Pollution in the Tigris River
...Show More Authors

Chemical pollution is a very important issue that people suffer from and it often affects the nature of health of society and the future of the health of future generations. Consequently, it must be considered in order to discover suitable models and find descriptions to predict the performance of it in the forthcoming years. Chemical pollution data in Iraq take a great scope and manifold sources and kinds, which brands it as Big Data that need to be studied using novel statistical methods. The research object on using Proposed Nonparametric Procedure NP Method to develop an (OCMT) test procedure to estimate parameters of linear regression model with large size of data (Big Data) which comprises many indicators associated with chemi

... Show More
View Publication
Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Regression shrinkage and selection variables via an adaptive elastic net model
...Show More Authors
Abstract<p>In this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in </p> ... Show More
View Publication
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Economics And Administrative Sciences
Compare some wavelet estimators for parameters in the linear regression model with errors follows ARFIMA model.
...Show More Authors

The aim of this research is to estimate the parameters of the linear regression model with errors following ARFIMA model by using wavelet method depending on maximum likelihood and approaching general least square as well as ordinary least square. We use the estimators in practical application on real data, which were the monthly data of Inflation and Dollar exchange rate obtained from the (CSO) Central Statistical organization for the period from 1/2005 to 12/2015. The results proved that (WML) was the most reliable and efficient from the other estimators, also the results provide that the changing of fractional difference parameter (d) doesn’t effect on the results.

View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison Between Some Estimator Methods of Linear Regression Model With Auto-Correlated Errors With Application Data for the Wheat in Iraq
...Show More Authors

This research a study model of linear regression problem of autocorrelation of random error is spread when a normal distribution as used in linear regression analysis for relationship between variables and through this relationship can predict the value of a variable with the values of other variables, and was comparing methods (method of least squares, method of the average un-weighted, Thiel method and Laplace method) using the mean square error (MSE) boxes and simulation and the study included fore sizes of samples (15, 30, 60, 100). The results showed that the least-squares method is best, applying the fore methods of buckwheat production data and the cultivated area of the provinces of Iraq for years (2010), (2011), (2012),

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Comparison Different Estimation Methods for the Parameters of Non-Linear Regression
...Show More Authors

   Nonlinear regression models are important tools for solving optimization problems. As traditional techniques would fail to reach satisfactory solutions for the parameter estimation problem.  Hence, in this paper, the BAT algorithm  to estimate the parameters of  Nonlinear Regression models is used . The simulation study is considered to investigate the performance of the proposed algorithm with the maximum likelihood (MLE) and Least square (LS) methods. The results show that the Bat algorithm provides accurate estimation and it is satisfactory for the parameter estimation of the nonlinear regression models than MLE and LS methods depend on Mean Square error.

View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
USE OF MODIFIED MAXIMUM LIKELIHOOD METHOD TO ESTIMATE PARAMETERS OF THE MULTIPLE LINEAR REGRESSION MODEL
...Show More Authors

Scopus
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Determination of Optimum Mechanical Drilling Parameters for an Iraqi Field with Regression Model
...Show More Authors

An optimization analysis of drilling process constitutes a powerful tool for operating under desired pressure levels and simultaneously maximizing the penetration rate, which reduces costs and time thus increases the profit.
In this study, a composite drilling model (Young-Bourgyen model) of eight functions was used to determine the optimum drilling mechanical parameters (Weight on bit and rotary speed) for an Iraqi oil field. These functions model the effect of most drilling parameters such as formation strength, mud density, formation compaction, weight on bit, rotary speed, tooth dullness, and bit hydraulic on drilling rate. Data are extracted from bit record and drilling report of well BUZ-20 for calculation of eight exponents of

... Show More
View Publication Preview PDF