Amputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducted in this study utilized the Binary Grey Wolf Optimization (BGWO) algorithm to select optimal features for the proposed classification model. The results demonstrate promising outcomes, with an average classification accuracy of 93.6% for three amputees and five individuals with intact limbs. The accuracy achieved in classifying the seven types of hand and wrist movements further validates the effectiveness of the proposed approach. By offering a non-invasive and reliable means of recognizing upper limb movements, this research represents a significant step forward in biotechnical engineering for upper limb amputees. The findings hold considerable potential for enhancing the control and usability of prosthetic devices, ultimately contributing to the overall quality of life for individuals with upper limb amputations.
To evaluate the efficiency and effectiveness of three minimally invasive (MI) techniques in removing deep dentin carious lesions. Forty extracted carious molars were treated by conventional rotary excavation (control), chemomechanical caries removal agent (Brix 3000), ultrasonic abrasion (WOODPECKER, GUILIN, China); and Er, Cr: YSGG laser ablation (BIOLASE San Clemente, CA, USA). The assessments include; the excavation time, DIAGNOdent pen, Raman spectroscopy, Vickers microhardness, and scanning electron microscope combined with energy dispersive X-ray spectroscopy (SEM–EDX). The rotary method recorded the shortest excavation time (p < 0.001), Brix 3000 gel was the slowest. DIAGNOdent pen va
This work involves three parts , first part is manufacturing different types of laminated below knee prosthetic socket materials with different classical laminated materials used in Baghdad center for prosthetic and orthotic (4perlon layers+2carbon fiber layer+4 perlon layers) , two suggested laminated materials(3perlon layers+2carbon fiber layer+3 perlon layers) and (3perlon layers+1carbon fiber layer+3 perlon layers) ) in order to choose perfect laminated socket . The second part tests (Impact test) the laminated materials specimens used in socket manufacturing in order to get the impact properties for each socket materials groups using an experimental rig designed especially for this purpose. The interface pressure between
... Show MoreMost below-knee prostheses are manufactured in Iraq without considering the fast progress in smart prostheses, which can offer movements in the desired directions according to the type of control system designed for this purpose. The proposed design appears to have the advantages of simplicity, affordability, better load distribution, suitability for subjects with transtibial amputation, and viability in countries with people having low socio-economic status. The designed prosthetics consisted of foot, ball, and socket joints, two stepper motors, a linkage system, and an EMG shield. All these materials were available in the local markets in Iraq. The experimental results showed t
... Show MoreStatistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in c
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Deci
... Show MoreRecurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show MoreTo expedite the learning process, a group of algorithms known as parallel machine learning algorithmscan be executed simultaneously on several computers or processors. As data grows in both size andcomplexity, and as businesses seek efficient ways to mine that data for insights, algorithms like thesewill become increasingly crucial. Data parallelism, model parallelism, and hybrid techniques are justsome of the methods described in this article for speeding up machine learning algorithms. We alsocover the benefits and threats associated with parallel machine learning, such as data splitting,communication, and scalability. We compare how well various methods perform on a variety ofmachine learning tasks and datasets, and we talk abo
... Show More