Preferred Language
Articles
/
lRYT-YsBVTCNdQwCXPXn
Enhancing Upper Limb Prosthetic Control in Amputees Using Non-invasive EEG and EMG Signals with Machine Learning Techniques
...Show More Authors

Amputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducted in this study utilized the Binary Grey Wolf Optimization (BGWO) algorithm to select optimal features for the proposed classification model. The results demonstrate promising outcomes, with an average classification accuracy of 93.6% for three amputees and five individuals with intact limbs. The accuracy achieved in classifying the seven types of hand and wrist movements further validates the effectiveness of the proposed approach. By offering a non-invasive and reliable means of recognizing upper limb movements, this research represents a significant step forward in biotechnical engineering for upper limb amputees. The findings hold considerable potential for enhancing the control and usability of prosthetic devices, ultimately contributing to the overall quality of life for individuals with upper limb amputations.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Engineering
Analysis of Prosthetic Running Blade of Limb Using Different Composite Materials
...Show More Authors

Prostheses are used as an alternative to organs lost from the body. Flex-Foot Cheetah is considered one of the lower limb prostheses used in high-intensity activities such as running. This research focused on testing two samples of Flex-Foot Cheetah manufactured of two various materials (carbon, glass) with polyester and compare between them to find the foot with the best performance in running on the level of professional athlete. In the numerical analysis, the maximum principal stress, maximum principal elastic strain, strain energy; finally, the blade total deformation were calculated for both feet. In experimental work, the load-deflection test was done for foot to calculate the bending the results were very close to

... Show More
View Publication Preview PDF
Crossref (9)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Bio Web Of Conferences
An overview of machine learning classification techniques
...Show More Authors

Machine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (6)
Scopus Crossref
Publication Date
Mon Jul 01 2013
Journal Name
2013 35th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Protocol for site selection and movement assessment for the myoelectric control of a multi-functional upper-limb prosthesis
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
View Publication
Scopus (9)
Crossref (6)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Proceedings Of 2nd International Multi-disciplinary Conference Theme: Integrated Sciences And Technologies, Imdc-ist 2021, 7-9 September 2021, Sakarya, Turkey
Investigation of the Effect of Diabetes on Lower Limb Muscles with Surface Electromyography (EMG)
...Show More Authors

View Publication
Crossref
Publication Date
Thu Mar 01 2007
Journal Name
Al-khwarizmi Engineering Journal
An experimental comparative study between polypropylene and laminated lower limb prosthetic socket
...Show More Authors

Most researchers concentrate their studies on the design, stress and pressure distributions of the prosthetic socket. A little attention is considered for the stiffness of the various materials of the prosthetic sockets. Prosthetic laminated sockets in Iraq are costly to be manufactured while polypropylene socket is relatively cheap in comparing with the laminates.

Experimental study is conducted to compare the stiffness of five prosthetic sockets made of different materials. Compression, three point flexural and tensile tests are implemented by the Testometric machine. The laminate sockets give better results in compression than polypropylene. Polypropylene gives good results in bending compared with the laminate sockets. When t

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 30 2021
Journal Name
Iraqi Journal For Electrical And Electronic Engineering
EEG Motor-Imagery BCI System Based on Maximum Overlap Discrete Wavelet Transform (MODWT) and Machine learning algorithm
...Show More Authors

The ability of the human brain to communicate with its environment has become a reality through the use of a Brain-Computer Interface (BCI)-based mechanism. Electroencephalography (EEG) has gained popularity as a non-invasive way of brain connection. Traditionally, the devices were used in clinical settings to detect various brain diseases. However, as technology advances, companies such as Emotiv and NeuroSky are developing low-cost, easily portable EEG-based consumer-grade devices that can be used in various application domains such as gaming, education. This article discusses the parts in which the EEG has been applied and how it has proven beneficial for those with severe motor disorders, rehabilitation, and as a form of communi

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Jul 09 2024
Journal Name
Diagnostics
A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification
...Show More Authors

Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Jan 19 2019
Journal Name
Artificial Intelligence Review
Survey on supervised machine learning techniques for automatic text classification
...Show More Authors

View Publication
Scopus (270)
Crossref (238)
Scopus Clarivate Crossref
Publication Date
Tue Dec 27 2022
Journal Name
2022 3rd Information Technology To Enhance E-learning And Other Application (it-ela)
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Crossref