Amputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducted in this study utilized the Binary Grey Wolf Optimization (BGWO) algorithm to select optimal features for the proposed classification model. The results demonstrate promising outcomes, with an average classification accuracy of 93.6% for three amputees and five individuals with intact limbs. The accuracy achieved in classifying the seven types of hand and wrist movements further validates the effectiveness of the proposed approach. By offering a non-invasive and reliable means of recognizing upper limb movements, this research represents a significant step forward in biotechnical engineering for upper limb amputees. The findings hold considerable potential for enhancing the control and usability of prosthetic devices, ultimately contributing to the overall quality of life for individuals with upper limb amputations.
Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy
... Show MoreThis research is a study of the difficulties of learning the Arabic language that faces Arabic language learners in the Kurdistan Region, by revealing its types and forms, which can be classified into two categories:
The first type has difficulties related to the educational system, the source of which is the Arabic language itself, the Arabic teacher or the learner studying the Arabic language or the educational curriculum, i.e. educational materials, or the educational process, i.e. the method used in teaching.
The second type: general difficulties related to the political aspect, the source of which is the policy of the Kurdistan Regional Government in marginalizing the Arabic language and replacing the forefront of th
... Show MoreIn this paper, two of the local search algorithms are used (genetic algorithm and particle swarm optimization), in scheduling number of products (n jobs) on a single machine to minimize a multi-objective function which is denoted as (total completion time, total tardiness, total earliness and the total late work). A branch and bound (BAB) method is used for comparing the results for (n) jobs starting from (5-18). The results show that the two algorithms have found the optimal and near optimal solutions in an appropriate times.
Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreThis paper is devoted to investigate the effect of internal curing technique on the properties of self-compacting concrete (SCC). In this study, SCC is produced by using silica fume (SF) as partial replacement by weight of cement with percentage of (5%), sand is partially replaced by volume with saturated fine lightweight aggregate (LWA) which is thermostone chips as internal curing material in three percentages of (5%, 10% and 15%) for SCC, two external curing conditions water and air. The experimental work was divided into three parts: in the first part, the workability tests of fresh SCC were conducted. The second part included conducting compressive strength test and modulus of rupture test at ages of (7, 28 and 90). The third part i
... Show MoreEmpirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show More This research deals with the financial reporting for the non-current assets impairment from the viewpoint of international accounting standards, especially IAS 36 "Impairment of assets”. The research problem focused on the non-compliance with the requirements of IAS 36 which would negatively affect the accounting information quality, and its characteristics, especially the relevance of accounting information, that confirms the necessity of having such information for the three sub-characteristics in order to be useful for the decisions of users represented
Deep Learning Techniques For Skull Stripping of Brain MR Images