The aim of this paper is to study the Zariski topology of a commutative KU-algebra. Firstly, we introduce new concepts of a KU-algebra, such as KU-lattice, involutory ideal and prime ideal and investigate some basic properties of these concepts. Secondly, the notion of the topology spectrum of a commutative KU-algebra is studied and several properties of this topology are provided. Also, we study the continuous map of this topological space.
In this ˑwork, we present theˑ notion of the ˑgraph for a KU-semigroup as theˑundirected simple graphˑ with the vertices are the elementsˑ of and weˑˑstudy the ˑgraph ofˑ equivalence classesˑofˑ which is determinedˑ by theˑ definition equivalenceˑ relation ofˑ these verticesˑ, andˑ then some related ˑproperties areˑ given. Several examples are presented and some theorems are proved. Byˑ usingˑ the definitionˑ ofˑ isomorphicˑ graph, ˑwe showˑ thatˑ the graphˑ of equivalence ˑclasses ˑand the ˑgraphˑof ˑa KU-semigroup ˑ areˑ theˑ sameˑ,
... Show MoreThe objective of this paper is, firstly, we study a new concept noted by algebra and discuss the properties of this concept. Secondly, we introduce a new concept related to the algebra such as smallest algebra. Thirdly, we introduce the notion of the restriction of algebra on a nonempty subset of and investigate some of its basic properties. Furthermore, we present the relationships between field, monotone class, field and algebra. Finally, we introduce the concept of measure relative to the algebra and prove that every measure relative to the is complete.
The aim of this investigation is to present the idea of SAH – ideal , closed SAH – ideal and closed SAH – ideal with respect to an element , and s- of BH – algebra .
We detail and show theorems which regulate the relationship between these ideas and provide some examples in BH – algebra .
The research is an article that teaches some classes of fully stable Banach - Å modules. By using Unital algebra studies the properties and characterizations of all classes of fully stable Banach - Å modules. All the results are existing, and they've been listed to complete the requested information.
Mosques could be considered as one of the most powerful architectural types throughout historical ages. With their highly symbolic formal legacy, Mosques play an essential role in providing the Islamic city with its special identity. Nevertheless, the advent of digital technology and its ubiquity at different levels of architectural design marked the emergence of new tendencies in the Architecture of Mosques, represented by various models added to the storage of this architectural type. Consequently a review of these tendencies would be needed, aiming at pointing out the formal transformations and new suggested characteristics.
The paper investigates the surviving and the disappearing formal components of&n
... Show MoreIn this paper the full stable Banach gamma-algebra modules, fully stable Banach gamma-algebra modules relative to ideal are introduced. Some properties and characterizations of these classes of full stability are studied.
The main objective of this work is to generalize the concept of fuzzy algebra by introducing the notion of fuzzy algebra. Characterization and examples of the proposed generalization are presented, as well as several different properties of fuzzy algebra are proven. Furthermore, the relationship between fuzzy algebra and fuzzy algebra is studied, where it is shown that the fuzzy algebra is a generalization of fuzzy algebra too. In addition, the notion of restriction, as an important property in the study of measure theory, is studied as well. Many properties of restriction of a nonempty family of fuzzy subsets of fuzzy power set are investigated and it is shown that the restriction of fuzzy algebra is fuzzy algebra too.
In cognitive radio networks, there are two important probabilities; the first probability is important to primary users called probability of detection as it indicates their protection level from secondary users, and the second probability is important to the secondary users called probability of false alarm which is used for determining their using of unoccupied channel. Cooperation sensing can improve the probabilities of detection and false alarm. A new approach of determine optimal value for these probabilities, is supposed and considered to face multi secondary users through discovering an optimal threshold value for each unique detection curve then jointly find the optimal thresholds. To get the aggregated throughput over transmission
... Show MoreCognitive radios have the potential to greatly improve spectral efficiency in wireless networks. Cognitive radios are considered lower priority or secondary users of spectrum allocated to a primary user. Their fundamental requirement is to avoid interference to potential primary users in their vicinity. Spectrum sensing has been identified as a key enabling functionality to ensure that cognitive radios would not interfere with primary users, by reliably detecting primary user signals. In addition, reliable sensing creates spectrum opportunities for capacity increase of cognitive networks. One of the key challenges in spectrum sensing is the robust detection of primary signals in highly negative signal-to-noise regimes (SNR).In this paper ,
... Show MoreIn this paper, we introduce the notions of Complete Pseudo Ideal, K-pseudo Ideal, Complete K-pseudo Ideal in pseudo Q-algebra. Also, we give some theorems and relationships among them are debated.