Preferred Language
Articles
/
lBcLIJMBVTCNdQwCesY9
Automatic Approach for Word Sense Disambiguation Using Genetic Algorithms

Abstract: Word sense disambiguation (WSD) is a significant field in computational linguistics as it is indispensable for many language understanding applications. Automatic processing of documents is made difficult because of the fact that many of the terms it contain ambiguous. Word Sense Disambiguation (WSD) systems try to solve these ambiguities and find the correct meaning. Genetic algorithms can be active to resolve this problem since they have been effectively applied for many optimization problems. In this paper, genetic algorithms proposed to solve the word sense disambiguation problem that can automatically select the intended meaning of a word in context without any additional resource. The proposed algorithm is evaluated on a collection of documents and produce's a lot of sense to the ambiguities word, the system creates dynamic, and up-todate word sense in a highly automatic method.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jul 01 2014
Journal Name
Sage Open
Individual Mobility and the Sense of “Deadlock”

Individual mobility is an outcome of the rapid changes in life; it is revealed in particular literary works within the end of the 19th century. Mobility is clearer in modern time as the individual has become physically freer in his movement. But the individual’s freedom is often conditioned by restrictions. Usually, change stimulates individuals to obtain new structure of feeling; the individual mocks or rages against institutions, or he would comply, suffering rapid personal deterioration as he faces effective stability or institutions. There is a continuous sense of “deadlock.” Sylvia Plath’s novel reflects the depression of an intellectual young woman who fails to find her right path muddled by an inconsistent, confusing

... Show More
Scopus Crossref
View Publication
Publication Date
Fri Jan 01 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Publication Date
Thu Jun 16 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Optimization algorithms for transportation problems with stochastic demand

The purpose of this paper is to solve the stochastic demand for the unbalanced transport problem using heuristic algorithms to obtain the optimum solution, by minimizing the costs of transporting the gasoline product for the Oil Products Distribution Company of the Iraqi Ministry of Oil. The most important conclusions that were reached are the results prove the possibility of solving the random transportation problem when the demand is uncertain by the stochastic programming model. The most obvious finding to emerge from this work is that the genetic algorithm was able to address the problems of unbalanced transport, And the possibility of applying the model approved by the oil products distribution company in the Iraqi Ministry of Oil to m

... Show More
Scopus (6)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fast Training Algorithms for Feed Forward Neural Networks

 The aim of this paper, is to discuss several high performance training algorithms fall into two main categories. The first category uses heuristic techniques, which were developed from an analysis of the performance of the standard gradient descent algorithm. The second category of fast algorithms uses standard numerical optimization techniques such as: quasi-Newton . Other aim is to solve the drawbacks related with these training algorithms and propose an efficient training algorithm for FFNN

View Publication Preview PDF
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Review on Hybrid Swarm Algorithms for Feature Selection

    Feature selection represents one of the critical processes in machine learning (ML). The fundamental aim of the problem of feature selection is to maintain performance accuracy while reducing the dimension of feature selection. Different approaches were created for classifying the datasets. In a range of optimization problems, swarming techniques produced better outcomes. At the same time, hybrid algorithms have gotten a lot of attention recently when it comes to solving optimization problems. As a result, this study provides a thorough assessment of the literature on feature selection problems using hybrid swarm algorithms that have been developed over time (2018-2021). Lastly, when compared with current feature selection procedu

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
Proposed Hybrid Sparse Adaptive Algorithms for System Identification

Abstract 

For sparse system identification,recent suggested algorithms are  -norm Least Mean Square (  -LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named  -ZA-LMS, 

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Mar 02 2014
Journal Name
Baghdad Science Journal
On Solving Hyperbolic Trajectory Using New Predictor-Corrector Quadrature Algorithms

In this Paper, we proposed two new predictor corrector methods for solving Kepler's equation in hyperbolic case using quadrature formula which plays an important and significant rule in the evaluation of the integrals. The two procedures are developed that, in two or three iterations, solve the hyperbolic orbit equation in a very efficient manner, and to an accuracy that proves to be always better than 10-15. The solution is examined with and with grid size , using the first guesses hyperbolic eccentric anomaly is and , where is the eccentricity and is the hyperbolic mean anomaly.

Crossref
View Publication Preview PDF
Publication Date
Tue Mar 01 2011
Journal Name
Al-khwarizmi Engineering Journal
Noise Removal of ECG Signal Using Recursive Least Square Algorithms

This paper shows an approach for Electromyography (ECG) signal processing based on linear and nonlinear adaptive filtering using Recursive Least Square (RLS) algorithm to remove two kinds of noise that affected the ECG signal. These are the High Frequency Noise (HFN) and Low Frequency Noise (LFN). Simulation is performed in Matlab. The ECG, HFN and LFN signals used in this study were downloaded from ftp://ftp.ieee.org/uploads/press/rangayyan/, and then the filtering process was obtained by using adaptive finite impulse response (FIR) that illustrated better results than infinite impulse response (IIR) filters did.

View Publication Preview PDF
Publication Date
Sat Mar 19 2022
Journal Name
Al-khwarizmi Engineering Journal
Enhancement of System Security by Using LSB and RSA Algorithms

A steganography hides information within other information, such as file, message, picture, or video. A cryptography is the science of converting the information from a readable form to an unreadable form for unauthorized person. The main problem in the stenographic system is embedding in cover-data without providing information that would facilitate its removal. In this research, a method for embedding data into images is suggested which employs least significant bit Steganography (LSB) and ciphering (RSA algorithm) to protect the data. System security will be enhanced by this collaboration between steganography and cryptography.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Improved Image Compression Technique Using EZW and SPHIT Algorithms

 Uncompressed form of the digital images are needed a very large storage capacity amount, as a consequence requires large communication bandwidth for data transmission over the network. Image compression techniques not only minimize the image storage space but also preserve the quality of image. This paper reveal image compression technique which uses distinct image coding scheme based on wavelet transform that combined effective types of compression algorithms for further compression. EZW and SPIHT algorithms are types of significant compression techniques that obtainable for lossy image compression algorithms. The EZW coding is a worthwhile and simple efficient algorithm. SPIHT is an most powerful technique that utilize for image

... Show More
Crossref (2)
Crossref
View Publication Preview PDF