Preferred Language
Articles
/
lBcLIJMBVTCNdQwCesY9
Automatic Approach for Word Sense Disambiguation Using Genetic Algorithms
...Show More Authors

Abstract: Word sense disambiguation (WSD) is a significant field in computational linguistics as it is indispensable for many language understanding applications. Automatic processing of documents is made difficult because of the fact that many of the terms it contain ambiguous. Word Sense Disambiguation (WSD) systems try to solve these ambiguities and find the correct meaning. Genetic algorithms can be active to resolve this problem since they have been effectively applied for many optimization problems. In this paper, genetic algorithms proposed to solve the word sense disambiguation problem that can automatically select the intended meaning of a word in context without any additional resource. The proposed algorithm is evaluated on a collection of documents and produce's a lot of sense to the ambiguities word, the system creates dynamic, and up-todate word sense in a highly automatic method.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 01 2015
Journal Name
Journal Of Engineering
Multi-Sites Multi-Variables Forecasting Model for Hydrological Data using Genetic Algorithm Modeling
...Show More Authors

A two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 19 2019
Journal Name
Artificial Intelligence Review
Survey on supervised machine learning techniques for automatic text classification
...Show More Authors

View Publication
Scopus (294)
Crossref (264)
Scopus Clarivate Crossref
Publication Date
Wed Mar 01 2017
Journal Name
2017 Annual Conference On New Trends In Information & Communications Technology Applications (ntict)
Automatic Iraqi license plate recognition system using back propagation neural network (BPNN)
...Show More Authors

View Publication
Scopus (9)
Crossref (8)
Scopus Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Genetic--Based Face Retrieval Using Statistical Features
...Show More Authors

Publication Date
Fri May 30 2025
Journal Name
University Of Anbar Sport And Physical Education Sciences
The effect of using aids in spatial sense perception Throwing weights under 18 years old
...Show More Authors

View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Ieee Access
Wrapper and Hybrid Feature Selection Methods Using Metaheuristic Algorithms for English Text Classification: A Systematic Review
...Show More Authors

Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall

... Show More
View Publication Preview PDF
Scopus (38)
Crossref (31)
Scopus Clarivate Crossref
Publication Date
Tue Jul 01 2014
Journal Name
Sage Open
Individual Mobility and the Sense of “Deadlock”
...Show More Authors

Individual mobility is an outcome of the rapid changes in life; it is revealed in particular literary works within the end of the 19th century. Mobility is clearer in modern time as the individual has become physically freer in his movement. But the individual’s freedom is often conditioned by restrictions. Usually, change stimulates individuals to obtain new structure of feeling; the individual mocks or rages against institutions, or he would comply, suffering rapid personal deterioration as he faces effective stability or institutions. There is a continuous sense of “deadlock.” Sylvia Plath’s novel reflects the depression of an intellectual young woman who fails to find her right path muddled by an inconsistent, confusing

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Jun 16 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Optimization algorithms for transportation problems with stochastic demand
...Show More Authors

The purpose of this paper is to solve the stochastic demand for the unbalanced transport problem using heuristic algorithms to obtain the optimum solution, by minimizing the costs of transporting the gasoline product for the Oil Products Distribution Company of the Iraqi Ministry of Oil. The most important conclusions that were reached are the results prove the possibility of solving the random transportation problem when the demand is uncertain by the stochastic programming model. The most obvious finding to emerge from this work is that the genetic algorithm was able to address the problems of unbalanced transport, And the possibility of applying the model approved by the oil products distribution company in the Iraqi Ministry of Oil to m

... Show More
View Publication
Scopus (11)
Crossref (3)
Scopus Crossref
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fast Training Algorithms for Feed Forward Neural Networks
...Show More Authors

 The aim of this paper, is to discuss several high performance training algorithms fall into two main categories. The first category uses heuristic techniques, which were developed from an analysis of the performance of the standard gradient descent algorithm. The second category of fast algorithms uses standard numerical optimization techniques such as: quasi-Newton . Other aim is to solve the drawbacks related with these training algorithms and propose an efficient training algorithm for FFNN

View Publication Preview PDF
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
Proposed Hybrid Sparse Adaptive Algorithms for System Identification
...Show More Authors

Abstract 

For sparse system identification,recent suggested algorithms are  -norm Least Mean Square (  -LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named  -ZA-LMS, 

... Show More
View Publication Preview PDF
Crossref