Face recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face image datasets, ORL and FEI. Different state-of-the-art face recognition methods were compared with the proposed method in order to evaluate its accuracy. We demonstrate that the proposed method achieves the highest recognition rate in different considered scenarios. Based on the obtained results, it can be seen that the proposed method is robust against noise and significantly outperforms previous approaches in terms of speed.
Nowadays, information systems constitute a crucial part of organizations; by losing security, these organizations will lose plenty of competitive advantages as well. The core point of information security (InfoSecu) is risk management. There are a great deal of research works and standards in security risk management (ISRM) including NIST 800-30 and ISO/IEC 27005. However, only few works of research focus on InfoSecu risk reduction, while the standards explain general principles and guidelines. They do not provide any implementation details regarding ISRM; as such reducing the InfoSecu risks in uncertain environments is painstaking. Thus, this paper applied a genetic algorithm (GA) for InfoSecu risk reduction in uncertainty. Finally, the ef
... Show MoreJPEG is most popular image compression and encoding, this technique is widely used in many applications (images, videos and 3D animations). Meanwhile, researchers are very interested to develop this massive technique to compress images at higher compression ratios with keeping image quality as much as possible. For this reason in this paper we introduce a developed JPEG based on fast DCT and removed most of zeros and keeps their positions in a transformed block. Additionally, arithmetic coding applied rather than Huffman coding. The results showed up, the proposed developed JPEG algorithm has better image quality than traditional JPEG techniques.
Association rules mining (ARM) is a fundamental and widely used data mining technique to achieve useful information about data. The traditional ARM algorithms are degrading computation efficiency by mining too many association rules which are not appropriate for a given user. Recent research in (ARM) is investigating the use of metaheuristic algorithms which are looking for only a subset of high-quality rules. In this paper, a modified discrete cuckoo search algorithm for association rules mining DCS-ARM is proposed for this purpose. The effectiveness of our algorithm is tested against a set of well-known transactional databases. Results indicate that the proposed algorithm outperforms the existing metaheuristic methods.
There are many techniques that can be used to estimate the spray quality traits such as the spray coverage, droplet density, droplet count, and droplet diameter. One of the most common techniques is to use water sensitive papers (WSP) as a spray collector on field conditions and analyzing them using several software. However, possible merger of some droplets could occur after they deposit on WSP, and this could affect the accuracy of the results. In this research, image processing technique was used for better estimation of the spray traits, and to overcome the problem of droplet merger. The droplets were classified as non-merged and merged droplets based on their roundness, then the merged droplets were separated based on the average non-m
... Show MoreMany of accurate inertial guided missilc systems need to use more complex mathematical calculations and require a high speed processing to ensure the real-time opreation. This will give rise to the need of developing an effcint