Preferred Language
Articles
/
khiXdJQBVTCNdQwCeBjf
CALCULATION OF THE PARAMETERS FOR ATMOSPHERICMODEL FOR THE EARTH
...Show More Authors

Publication Date
Mon Oct 04 2021
Journal Name
Journal Of Petroleum Exploration And Production Technology
Perforation location optimization through 1-D mechanical earth model for high-pressure deep formations
...Show More Authors

Optimum perforation location selection is an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magni

... Show More
Publication Date
Wed Feb 02 2022
Journal Name
Journal Of Physics: Conference Series
Studying the parameters effect of the sputtering yield for polypropylene bombarding by ions of atmospheric background gases
...Show More Authors

Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Some Estimation for the Parameters and Hazard Function of Kummer Beta Generalized Normal Distribution
...Show More Authors

Transforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Estimation of Parameters for the Gumbel Type-I Distribution under Type-II Censoring Scheme
...Show More Authors

This paper aims to decide the best parameter estimation methods for the parameters of the Gumbel type-I distribution under the type-II censorship scheme. For this purpose, classical and Bayesian parameter estimation procedures are considered. The maximum likelihood estimators are used for the classical parameter estimation procedure. The asymptotic distributions of these estimators are also derived. It is not possible to obtain explicit solutions of Bayesian estimators. Therefore, Markov Chain Monte Carlo, and Lindley techniques are taken into account to estimate the unknown parameters. In Bayesian analysis, it is very important to determine an appropriate combination of a prior distribution and a loss function. Therefore, two different

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jun 07 2009
Journal Name
Baghdad Science Journal
Limits between the Cosmological Parameters from Strong Lensing Observations for Generalized Isothermal Models
...Show More Authors

This paper including a gravitational lens time delays study for a general family of lensing potentials, the popular singular isothermal elliptical potential (SIEP), and singular isothermal elliptical density distribution (SIED) but allows general angular structure. At first section there is an introduction for the selected observations from the gravitationally lensed systems. Then section two shows that the time delays for singular isothermal elliptical potential (SIEP) and singular isothermal elliptical density distributions (SIED) have a remarkably simple and elegant form, and that the result for Hubble constant estimations actually holds for a general family of potentials by combining the analytic results with data for the time dela

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 27 2020
Journal Name
Solid State Technology
Seepage and Slope Stability Analysis for Hemrin Earth Dam in Iraq Using Geo-Studio Software
...Show More Authors

View Publication
Publication Date
Fri Jan 01 2021
Journal Name
Open Geosciences
Impact of wall movements on the location of passive Earth thrust
...Show More Authors
Abstract<p>The general assumption of linear variation of earth pressures with depth on retaining structures is still controversial; investigations are yet required to determine those distributions of the passive earth pressure (PEP) accurately and deduce the corresponding centroid location. In particular, for rigid retaining walls, the calculation of PEP is strongly dependent on the type of wall movement. This paper presents a numerical analysis for studying the influence of wall movement on the PEP distribution on a rigid retaining wall and the passive earth thrust location. The numerical predictions are remarkably similar to existing experimental works as recorded on scaled test models and ful</p> ... Show More
View Publication Preview PDF
Scopus (11)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Wed Nov 08 2023
Journal Name
Technologies And Materials For Renewable Energy, Environment, And Sustainability: Tmrees23fr
Determination microstructure parameters for copper oxide nanoparticles
...Show More Authors

In this research, the results of x-ray diffraction method were used to determine the uniform stress deformation and microstructure parameters of CuO nanoparticles to determine the lattice strain obtained and crystallite size and then to compare the results obtained by two model Halder Wagner and Size Strain Plot with the results of these methods of the same powder using equations during which the calculation of the size of the crystallite size and lattice strain, It was found that the results obtained the values of the crystallite size (19.81nm) and the lattice strain (0.004065) of the Halder-wagner model respectively and for the ssp method were the results of the crystallite size (17.20nm) and lattice strain (0.000305) respectively. The sa

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Mathematical Modeling for the Clarifier Units and Turbidity Parameters in AL-KARAMA Treatment Plant
...Show More Authors

The high cost of chemical analysis of water has necessitated various researches into finding alternative method of determining portable water quality. This paper is aimed at modelling the turbidity value as a water quality parameter. Mathematical models for turbidity removal were developed based on the relationships between water turbidity and other water criteria. Results showed that the turbidity of water is the cumulative effect of the individual parameters/factors affecting the system. A model equation for the evaluation and prediction of a clarifier’s performance was developed:

Model: T = T0(-1.36729 + 0.037101∙10λpH + 0.048928t + 0.00741387∙alk)

The developed model will aid the predictiv

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 02 2018
Journal Name
Iraqi Journal Of Physics
Optical emission spectroscopy for studying the exploding copper wire plasma parameters in distilled water
...Show More Authors

This work aims to study the exploding copper wire plasma parameters by optical emission spectroscopy. The emission spectra of the copper plasma have been recorded and analyzed The plasma electron temperature (Te), was calculated by Boltzmann plot, and the electron density (ne) calculated by using Stark broadening method for different copper wire diameter (0.18, 0.24 and 0.3 mm) and current
of 75A in distilled water. The hydrogen (Hα line) 656.279 nm was used to calculate the electron density for different wire diameters by Stark broadening. It was found that the electron density ne decrease from 22.4×1016 cm-3 to 17×1016 cm-3 with increasing wire diameter from 0.18 mm to 0.3 mm while the electron temperatures increase from 0.741 to

... Show More
View Publication Preview PDF
Crossref (3)
Crossref