Preferred Language
Articles
/
kRhqLJQBVTCNdQwChgOI
Geomechanical Modeling and Artificial Neural Network Technique for Predicting Breakout Failure in Nasiriyah Oilfield
...Show More Authors

Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It also presents the optimal mud weight window for this field, which can be used to optimise the mud weights to minimise the wellbore instability issues. The results showed that an artificial neural network is a powerful tool for determining the breakout zones using the input data. The obtaining root mean square error and the determination coefficient were respectively 0.0082 and 0.959, by which the 1D MEM gave a high match between the predicted wellbore instabilities using the Mogi-failure criterion and the predicted breakout using the ANN model. Most borehole enlargements occur due to formation shear failures because of using low mud weights during drilling. The conclusion clarify the1.35 g/cc is the optimal mud weights for drilling new wells in this field of interest with fewer drilling issues.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 03 2013
Journal Name
Baghdad Science Journal
Study the Spectral reflectance and factor affecting they for the dominate land cover by using remote sensing technique in Abu-Gharib projection.
...Show More Authors

Image of landsate-7 taken by thematic mapper was used and classified using supervised method. Results of supervised classification indicated presence of nine land cover classes. Salt-soils class shows the highest reflectance value while water bodies' class shows the lowest values. Also the results indicated that soil properties show different effects on reflectance. There was a high significant positive relation of carbonate, gypsum, electric conductivity and silt content, while there was a week positive relation with sand and negative relation with organic matter, water content, bulk density and cataion exchange capacity.

View Publication Preview PDF
Crossref
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Modeling and Analysis of A Prey-Predator System Incorporating Fear, Predator-Dependent Refuge, with Cannibalism In Prey
...Show More Authors

    The relationship between prey and predator populations is hypothesized and examined using a mathematical model. Predation fear, cannibalism among the prey population, and a refuge reliant on predators are predicted to occur. This study set out to look at the long-term behavior of the proposed model and the effects of its key elements. The solution properties of the model were investigated. All potential equilibrium points' existence and stability were looked at. The system's persistence requirements were established. What circumstances could lead to local bifurcation near equilibrium points was uncovered. Suitable Lyapunov functions are used to study the system's overall dynamics. Numerical simulations were conducted to verify the

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Jun 29 2018
Journal Name
Journal Of Engineering
Finite Element Modeling and Parametric Study on Floor Steel Beam Concrete Slab System in Non-Composite Action.
...Show More Authors

This study aims to show, the strength of steel beam-concrete slab system without using shear connectors (known as a non-composite action), where the effect of the friction force between the concrete slab and the steel beam has been investigated, by using finite element simulation.

The proposed finite element model has been verified based on comparison with an experimental work. Then, the model was adopted to study the system strength with a different steel beam and concrete slab profile. ABAQUS has been adopted in the preparation of all numerical models for this study.

After validation of the numerical models, a parametric study was conducted, with linear and non-linear Regression analysis. An equation re

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Modeling and Simulation of Solar Module performance using Five Parameters Model by using Matlab in Baghdad City
...Show More Authors

This work presents the modeling of the electrical response of monocrystalline photovoltaic module by using five parameters model based on manufacture data-sheet of a solar module that measured in stander test conditions (STC) at radiation 1000W/m² and cell temperature 25 . The model takes into account the series and parallel (shunt) resistance of the module. This paper considers the details of Matlab modeling of the solar module by a developed Simulink model using the basic equations, the first approach was to estimate the parameters: photocurrent Iph, saturation current Is, shunt resistance Rsh, series resistance Rs, ideality factor A at stander test condition (STC) by an ite

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Dec 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Design of an Adaptive PID Neural Controller for Continuous Stirred Tank Reactor based on Particle Swarm Optimization
...Show More Authors

 A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.

View Publication Preview PDF
Publication Date
Tue Sep 04 2018
Journal Name
Al-khwarizmi Engineering Journal
Modified Elman Neural-PID Controller Design for DC-DC Buck Converter System Based on Dolphin Echolocation Optimization
...Show More Authors

This paper describes a new proposed structure of the Proportional Integral Derivative (PID) controller based on modified Elman neural network for the DC-DC buck converter system which is used in battery operation of the portable devices. The Dolphin Echolocation Optimization (DEO) algorithm is considered as a perfect on-line tuning technique therefore, it was used for tuning and obtaining the parameters of the modified Elman neural-PID controller to avoid the local minimum problem during learning the proposed controller. Simulation results show that the best weight parameters of the proposed controller, which are taken from the DEO, lead to find the best action and unsaturated state that will stabilize the Buck converter system performan

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed May 09 2012
Journal Name
Fuzzy Inference System - Theory And Applications
Some Studies on Noise and Its Effects on Industrial/Cognitive Task Performance and Modeling
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Fri May 01 2020
Journal Name
International Journal Of Advanced Science And Technology
Improved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval
...Show More Authors

Background/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CN

... Show More
Publication Date
Mon Oct 05 2020
Journal Name
International Journal Of Advanced Science And Technology
Improved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval
...Show More Authors

Improved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval

Publication Date
Wed May 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Comparison between Radial Basis Function and Wavelet Basis Functions Neural Networks
...Show More Authors

      In this paper we study and design two feed forward neural networks. The first approach uses radial basis function network and second approach uses wavelet basis function network to approximate the mapping from the input to the output space. The trained networks are then used in an conjugate gradient algorithm to estimate the output. These neural networks are then applied to solve differential equation. Results of applying these algorithms to several examples are presented

View Publication Preview PDF