Preferred Language
Articles
/
joe-231
The Use of the Artificial Damped Outrigger Systems in Tall R.C Buildings Under Seismic Loading

This paper studies the combination of fluid viscous dampers in the outrigger system to add supplementary damping into the structure, which purpose to remove the dependability of the structure to lower variable intrinsic damping. This optimizes the accuracy of the dynamic response and by providing higher level of damping, basically minimizes the wanted stiffness of the structure while at the same time optimizing the achievement.

     The modal considered is a 36 storey square high rise reinforced concrete building. By constructing a discrete lumped mass model and using frequency-based response function, two systems of dampers, parallel and series systems are studied. The maximum lateral load at the top of the building is calculated, and  this load  will be applied at every floor of the building, giving a conservative solution. For dynamic study Response Spectrum Analysis was conducted and the behavior of the building was determined considering response parameters. MATLAB software, has been used in the dynamic analysis for three modes.

     For all modes, it is observed that the parallel system of dampers result in lower amplitude of vibration and achieved more efficiently  compared to the damper is in series, until the parallel system arrives 100% damping for mode three.

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Engineering
Seismic Effects and Static Analysis for the Artificial Damped Outrigger Systems in Tall R.C Buildings

This paper studies the combination fluid viscous dampers in the outrigger system to add supplementary damping into the structure, which purpose to remove the dependability of the structure to lower variable intrinsic damping. It works by connecting the central core, comprising either shear walls or braced frames, to the outer perimeter columns.

     The modal considered is a 36 storey square high rise reinforced concrete building. By constructing a discrete lumped mass model, and using frequency-based response function, two systems of dampers, parallel and series systems are studied. The maximum lateral load at the top of the building is calculated, and  this load  w

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 01 2013
Journal Name
Journal Of Engineering
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
The Use of Bracing Dampers in Steel Buildings under Seismic Loading

This study focuses on the modeling of manufactured damper when used in steel buildings. The main aim of the manufactured dampers is to protect the steel buildings from the damaging effects that may result due to earthquakes by introducing an extra damping in addition to the traditional damping.
Only Pure Manufactured Dampers, has been considered in this study. Viscous modeling of damping is generally preferred in structural engineering as it leads to a linear model then it has been used during this study to simulate the behavior of the Pure Manufactured Damper.
After definition of structural parameters of a manufactured damper (its stiffness and its damping) it can be used as a structural element that can be added to a mathematica

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Dec 22 2020
Journal Name
Lecture Notes In Civil Engineering
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Thu Feb 28 2019
Journal Name
Journal Of Engineering
Frequency Domain Analysis for Geometric Nonlinear Seismic Response of Tall Reinforced Concrete Buildings

This paper aims to study the second-order geometric nonlinearity effects of P-Delta on the dynamic response of tall reinforced concrete buildings due to a wide range of earthquake ground motion forces, including minor earthquake up to moderate and strong earthquakes. The frequency domain dynamic analysis procedure was used for response assessment. Reinforced concrete building models with different heights up to 50 stories were analyzed. The finite element software ETABS (version 16.0.3) was used to analyze reinforced concrete building models.

The study reveals that the percentage increase in buildings' sway and drift due to P-Delta effects are nearly constant for specific building height irrespective of the seism

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sun Mar 20 2022
Journal Name
Geotechnical Engineering And Sustainable Construction
Numerical Modeling of Circular Tunnel Alignment Under Seismic Loading

The continuous increase in population has led to the development of underground structures like tunnels to be of great importance due to several reasons. One of these reasons is that tunnels do not affect the living activities on the surface, nor they interfere with the existing traffic network. More importantly, they have a less environmental impact than conventional highways and railways. This paper focuses on using numerical analysis of circular tunnels in terms of their behavior during construction and the deformations that may occur due to overburden and seismic loads imposed on them. In this study, the input data are taken from an existing Cairo metro case study; results were found for the lateral and vertical displacements, the Peak

... Show More
Crossref (3)
Crossref
View Publication
Publication Date
Tue Jan 07 2020
Journal Name
International Journal Of Innovative Research In Science, Engineering And Technology
Publication Date
Wed Jul 01 2020
Journal Name
International Journal Of Innovative Research In Science, Engineering And Technology
Publication Date
Sat Dec 02 2023
Journal Name
Journal Of Engineering
Numerical Simulation of Pile Group Response in Slope Layered Soil under the Effect of Seismic Loading

This work investigates the effect of earthquakes on the stability of a collective pile subjected to seismic loads in the soil layer. Plaxis 3D 2020 finite element software modeled pile behavior in dry soils with sloping layers. The results showed a remarkable fluctuation between the earthquakes, where the three earthquakes (Halabja, El Centro, and Kobe) and the acceleration peak in the Kobe earthquake had a time of about 11 seconds. Different settlement results were shown, as different values were recorded for the three types of earthquakes. Settlement ratios were increased by increasing the seismic intensity; hence the maximum settlement was observed with the model under the effect of the Kobe earthquake (0.58 g), where

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Mar 01 2016
Journal Name
Applied Research Journal
Response of R.C. Barriers Subjected to TNT Explosion Blast Loading

Reinforced concrete barriers have been commonly used in protecting the important building because the response of R.C. barriers subjected to blast loading is practically more acceptable than other materials used to build the barriers. In this study, the response of R.C. barriers was detected due to the blast effects caused by two charge weights (50 kg and 400 kg); ANSYS 14 was used to simulate the problem. A horizontal distance of 2 m between the explosive TNT charge and the front face of wall was taken. The pressure on the front face of the concrete barriers was measured at three levels. The R.C. barrier was entirely damaged when subjected to the blast effects caused by 400 kg TNT explosion bomb. However, the 50 kg TNT charge had

... Show More