Preferred Language
Articles
/
kRfFgJEBVTCNdQwCu5Wp
Solution of Riccati matrix differential equation using new approach of variational ‎iteration method
...Show More Authors

To obtain the approximate solution to Riccati matrix differential equations, a new variational iteration approach was ‎proposed, which is suggested to improve the accuracy and increase the convergence rate of the approximate solutons to the ‎exact solution. This technique was found to give very accurate results in a few number of iterations. In this paper, the ‎modified approaches were derived to give modified solutions of proposed and used and the convergence analysis to the exact ‎solution of the derived sequence of approximate solutions is also stated and proved. Two examples were also solved, which ‎shows the reliability and applicability of the proposed approach. ‎

Publication Date
Thu Feb 29 2024
Journal Name
Iraqi Journal Of Science
Finding the Exact Solution of Kepler’s Equation for an Elliptical Satellite Orbit Using the First Kind Bessel Function
...Show More Authors

     In this study, the first kind Bessel function was used to solve Kepler equation for an elliptical orbiting satellite. It is a classical method that gives a direct solution for calculation of the eccentric anomaly. It was solved for one period from (M=0-360)° with an eccentricity of (e=0-1) and the number of terms from (N=1-10). Also, the error in the representation of the first kind Bessel function was calculated. The results indicated that for eccentricity of (0.1-0.4) and (N = 1-10), the values of eccentric anomaly gave a good result as compared with the exact solution. Besides, the obtained eccentric anomaly values were unaffected by increasing the number of terms (N = 6-10) for eccentricities (0.8 and 0.9). The Bessel

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sat Feb 01 2020
Journal Name
Physics Of Fluids
Modeling the effects of slip on dipole–wall collision problems using a lattice Boltzmann equation method
...Show More Authors

We study the physics of flow due to the interaction between a viscous dipole and boundaries that permit slip. This includes partial and free slip, and interactions near corners. The problem is investigated by using a two relaxation time lattice Boltzmann equation with moment-based boundary conditions. Navier-slip conditions, which involve gradients of the velocity, are formulated and applied locally. The implementation of free-slip conditions with the moment-based approach is discussed. Collision angles of 0°, 30°, and 45° are investigated. Stable simulations are shown for Reynolds numbers between 625 and 10 000 and various slip lengths. Vorticity generation on the wall is shown to be affected by slip length, angle of incidence,

... Show More
View Publication
Scopus (13)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Mon Dec 30 2013
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Permeability Prediction of Un-Cored Intervals Using FZI Method and Matrix Density Grouping Method: A Case Study of Abughirab Field/Asmari FM., Iraq
...Show More Authors

Knowledge of permeability is critical for developing an effective reservoir description. Permeability data may be calculated from well tests, cores and logs. Normally, using well log data to derive estimates of permeability is the lowest cost method. This paper will focus on the evaluation of formation permeability in un-cored intervals for Abughirab field/Asmari reservoir in Iraq from core and well log data. Hydraulic flow unit (HFU) concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir quality index (RQI). Both measures are based on porosity and permeability of cores. It is assumed that samples with similar FZI values belong to the same HFU. A generated method is also used to calculate permea

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Efficient Approach for Solving (2+1) D- Differential Equations
...Show More Authors

     In this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.

View Publication Preview PDF
Scopus (8)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
Numerical Solution for Linear State Space Systems using Haar Wavelets Method
...Show More Authors

In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
The Approximate Solution of Fractional Damped Burger’s Equation and its Statistical Properties
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Solving Optimal Control Linear Systems by Using New Third kind Chebyshev Wavelets Operational Matrix of Derivative
...Show More Authors

In this paper, a new third kind Chebyshev wavelets operational matrix of derivative is presented, then the operational matrix of derivative is applied for solving optimal control problems using, third kind Chebyshev wavelets expansions. The proposed method consists of reducing the linear system of optimal control problem into a system of algebraic equations, by expanding the state variables, as a series in terms of third kind Chebyshev wavelets with unknown coefficients. Example to illustrate the effectiveness of the method has been presented.

View Publication Preview PDF
Crossref
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
An Efficient Numerical Method for Solving Volterra-Fredholm Integro-Differential Equations of Fractional Order by Using Shifted Jacobi-Spectral Collocation Method
...Show More Authors

The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.

View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Proceedings Of First International Conference On Mathematical Modeling And Computational Science: Icmmcs 2020
Study the Stability for Ordinary Differential Equations Using New Techniques via Numerical Methods
...Show More Authors

Nonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though

... Show More
Scopus (8)
Scopus
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Nonlinear Ritz Approximation for the Camassa-Holm Equation by Using the Modify Lyapunov-Schmidt method
...Show More Authors

 

          In this work, the modified Lyapunov-Schmidt reduction is used to find a nonlinear Ritz approximation of Fredholm functional defined by the nonhomogeneous Camassa-Holm equation and Benjamin-Bona-Mahony. We introduced the modified Lyapunov-Schmidt reduction for nonhomogeneous problems when the dimension of the null space is equal to two.  The nonlinear Ritz approximation for the nonhomogeneous Camassa-Holm equation has been found as a function of codimension twenty-four.

View Publication Preview PDF
Scopus Crossref