Preferred Language
Articles
/
kRfFgJEBVTCNdQwCu5Wp
Solution of Riccati matrix differential equation using new approach of variational ‎iteration method
...Show More Authors

To obtain the approximate solution to Riccati matrix differential equations, a new variational iteration approach was ‎proposed, which is suggested to improve the accuracy and increase the convergence rate of the approximate solutons to the ‎exact solution. This technique was found to give very accurate results in a few number of iterations. In this paper, the ‎modified approaches were derived to give modified solutions of proposed and used and the convergence analysis to the exact ‎solution of the derived sequence of approximate solutions is also stated and proved. Two examples were also solved, which ‎shows the reliability and applicability of the proposed approach. ‎

Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
An Efficient Numerical Method for Solving Volterra-Fredholm Integro-Differential Equations of Fractional Order by Using Shifted Jacobi-Spectral Collocation Method
...Show More Authors

The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
The Approximate Solution of Fractional Damped Burger’s Equation and its Statistical Properties
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximation Solution of Fuzzy Singular Volterra Integral Equation by Non-Polynomial Spline
...Show More Authors

A non-polynomial spline (NPS) is an approximation method that relies on the triangular and polynomial parts, so the method has infinite derivatives of the triangular part of the NPS to compensate for the loss of smoothness inherited by the polynomial. In this paper, we propose polynomial-free linear and quadratic spline types to solve fuzzy Volterra integral equations (FVIE) of the 2nd kind with the weakly singular kernel (FVIEWSK) and Abel's type kernel. The linear type algorithm gives four parameters to form a linear spline. In comparison, the quadratic type algorithm gives five parameters to create a quadratic spline, which is more of a credit for the exact solution. These algorithms process kernel singularities with a simple techniqu

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Proceedings Of First International Conference On Mathematical Modeling And Computational Science: Icmmcs 2020
Study the Stability for Ordinary Differential Equations Using New Techniques via Numerical Methods
...Show More Authors

Nonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though

... Show More
Scopus (8)
Scopus
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Solving Optimal Control Linear Systems by Using New Third kind Chebyshev Wavelets Operational Matrix of Derivative
...Show More Authors

In this paper, a new third kind Chebyshev wavelets operational matrix of derivative is presented, then the operational matrix of derivative is applied for solving optimal control problems using, third kind Chebyshev wavelets expansions. The proposed method consists of reducing the linear system of optimal control problem into a system of algebraic equations, by expanding the state variables, as a series in terms of third kind Chebyshev wavelets with unknown coefficients. Example to illustrate the effectiveness of the method has been presented.

View Publication Preview PDF
Crossref
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Open Newton Contes Formula for Solving Linear Voltera Integro-Differential Equation of the First Order
...Show More Authors

  In this work, some of numerical methods for solving first order linear Volterra IntegroDifferential Equations are presented.      The numerical solution of these equations is obtained by using Open Newton Cotes formula.      The Open Newton Cotes formula is applied to find the optimum solution for this equation.      The computer program is written in (MATLAB) language (version 6)

View Publication Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Nonlinear Ritz Approximation for the Camassa-Holm Equation by Using the Modify Lyapunov-Schmidt method
...Show More Authors

 

          In this work, the modified Lyapunov-Schmidt reduction is used to find a nonlinear Ritz approximation of Fredholm functional defined by the nonhomogeneous Camassa-Holm equation and Benjamin-Bona-Mahony. We introduced the modified Lyapunov-Schmidt reduction for nonhomogeneous problems when the dimension of the null space is equal to two.  The nonlinear Ritz approximation for the nonhomogeneous Camassa-Holm equation has been found as a function of codimension twenty-four.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Feb 03 2019
Journal Name
Journal Of The College Of Education For Women
Solution of the electromechanical machining problem using the collocation method based on Bernstein polynomials
...Show More Authors

0

View Publication Preview PDF
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
A New Operational Matrix of Derivative for Orthonormal Bernstein Polynomial's
...Show More Authors

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 06 2015
Journal Name
Baghdad Science Journal
Bounded Solutions of the Second Order Differential Equation x ?+f(x) x ?+g(x)=u(t)
...Show More Authors

In this paper we prove the boundedness of the solutions and their derivatives of the second order ordinary differential equation x ?+f(x) x ?+g(x)=u(t), under certain conditions on f,g and u. Our results are generalization of those given in [1].

View Publication Preview PDF
Crossref