<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121, InceptionV3, and Inception-ResNetV2. RNN was used to classify data after extracting complicated characteristics from them using CNN. The VGG19-RNN design had the greatest accuracy of all of the networks with 97.8% accuracy. Gradient-weighted the class activation mapping (Grad-CAM) method was then used to show the decision-making areas of pictures that are distinctive to each class. In comparison to other current systems, the system produced promising findings, and it may be confirmed as additional samples become available in the future. For medical personnel, the examination revealed an excellent alternative way of diagnosing COVID-19.</p>
In this study, the Halder-Wagner method was used for an analysisX-ray lines of Tio2 nanoparticles. Where the software was used to calculate the FWHM and integral breath (β) to calculate the area under the curve for each of the lines of diffraction. After that, the general equation of the halder- Wagner method is applied to calculate the volume (D), strain (ε), stress (σ), and energy per unit(u). Volume (β). Where the value of the crystal volume was equal to (0.16149870 nm) and the strain was equal to (1.044126), stress (181.678 N / m2), and energy per unit volume (94.8474 J m-3).The results obtained from these methods were then compared with those obtained from each of the new paradigm of the HalderWagner method, the Shearer developm
... Show MoreThe first known use of the term conspiracy theory dated back to the nineteenth century. It is defined as a theory that explains an event or set of circumstances as the result of a secret plot by usually powerful conspirators. It is commonly used, but by no means limited to, extreme political groups. Since the emergence of COVID-19 as a global pandemic in December 2019, the conspiracy theory was present at all stages of the pandemic.
The first known use of the term conspiracy theory dated back to the nineteenth century. It is defined as a theory that explains an event or set of circumstances as the result of a secret plot by usually powerful conspirators. It is commonly used, but by no means limited to, extreme political groups. Since the emergence of COVID-19 as a global pandemic in December 2019, the conspiracy theory was present at all stages of the pandemic.
In this study, the modified size-strain plot (SSP) method was used to analyze the x-ray diffraction lines pattern of diffraction lines (1 0 1), (1 2 1), (2 0 2), (0 4 2), (2 4 2) for the calcium titanate(CaTiO3) nanoparticles, and to calculate lattice strain, crystallite size, stress, and energy density, using three models: uniform (USDM). With a lattice strain of (2.147201889), a stress of (0.267452615X10), and an energy density of (2.900651X10-3 KJ/m3), the crystallite was 32.29477611 nm in size, and to calculate lattice strain of Scherrer (4.1644598X10−3), and (1.509066023X10−6 KJ/m3), a stress of(6.403949183X10−4MPa) and (26.019894 nm).
Background: Asthma is one of the most common chronic respiratory diseases in the world, standing for the most frequent cause for hospitalization and emergency cases. Respiratory viruses are the most triggering cause. Aim: To assess the role of viral infections, especially COVID-19, in the pathogenesis of asthma initiation and exacerbations. Method: Electronic search was done for the manuscripts focusing on asthma as a risk factor for complications after COVID-19 infection. The outcomes were titles, materials, methods and classified studies related or not related to the review study. Three hundred publications were identified and only ten studies were selected for analysis. Seven studies were review, one retrospective, one longitudin
... Show MoreThe COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. T
... Show MoreBackground: The global threat of COVID-19 outbreak and on the 11 March 2020, WHO acknowledged that the virus would likely spread to all countries across the globe and declared the coronavirus outbreak a pandemic which is the fifth pandemic since 20 century and this has brought human lives to a sudden and complete lockdown and the confirmed cases of this disease and deaths continue to rise in spite of people around the world are taking important actions to mitigate and decrease transmission and save lives. Objectives: To assess the effect of exercise and physical activity on the immunity against COVID-19. Methods: Collected electronic databases including (Medline, EMBASE, Google Scholar, PubMed and Web of Science) were searched with
... Show More