In this thesis, we introduced some kinds of fibrewise topological spaces by using totally continuous function is called fibrewise totally topological spaces. We generalize some fundamental results from fibrewise topology into fibrewise totally topological spaces. We also introduce the concepts of fibrewise totally separation axioms, fibrewise totally compact and locally totally compact topological spaces. As well as fibrewise totally perfect topological spaces. We explain and discuss new notion of fibrewise topological spaces, namely fibrewise totally topological spaces. We, also introduce the concepts of fibrewise totally closed topological spaces, fibrewise totally open topological spaces, fibrewise locally sliceable and locally sectionable totally topological spaces. One the other hand, we studied fibrewise totally forms of the more essential separation axioms of ordinary topology namely fibrewise totally T_0 spaces, fibrewise totally T_1 spaces, fibrewise totally R_0 spaces, fibrewise totally Hausdorff spaces, fibrewise totally functionally Hausdorff spaces, fibrewise totally regular spaces, fibrewise totally completely regular spaces, fibrewise totally normal spaces and fibrewise totally functionally normal spaces. Too we add numerous outcomes about it. As well as, we introduced a notion fibrewise totally compact and fibrewise locally totally compact topological spaces. Finally, we introduced a notion fibrewise totally perfect topological spaces, fibrewise weakly totally closed topological spaces, fibrewise totally rigidlly sets, fibrewise totally almost perfect topological spaces and fibrewise T^*topological spaces. We study several theorm and characterizations converning these concepts.
In this study, we present a new steganography method depend on quantizing the perceptual color spaces bands. Four perceptual color spaces are used to test the new method which is HSL, HSV, Lab and Luv, where different algorithms to calculate the last two-color spaces are used. The results reveal the validity of this method as a steganoic method and analysis for the effects of quantization and stegano process on the quality of the cover image and the quality of the perceptual color spaces bands are presented.
In the present study, the cluster concept was adopted to find points parallel to the cumulative points of any subset in topology cluster proximity spaces. The takeoff set term was given by the researcher to the set of all points. Also, an opposite definition was found for it, which is the follower set. The relation between them was found and their most important properties were highlighted. Through these two sets, new sets were built that are called, f_σ-set ,f_tσ-set ,t_fσ-set ,bushy set, scant set .
Soft closure spaces are a new structure that was introduced very recently. These new spaces are based on the notion of soft closure operators. This work aims to provide applications of soft closure operators. We introduce the concept of soft continuous mappings and soft closed (resp. open) mappings, support them with examples, and investigate some of their properties.
In this paper, the concept of contraction mapping on a -metric space is extended with a consideration on local contraction. As a result, two fixed point theorems were proved for contraction on a closed ball in a complete -metric space.
In this paper we introduce a lot of concepts in bitopological spaces which are ij-ω-converges to a subset, ij-ω-directed toward a set, ij-w-closed functions, ij-w-rigid set, ij-w-continuous functions and the main concept in this paper is ij-w-perfect functions between bitopological spaces. Several theorems and characterizations concerning these concepts are studied.
It is general known that any design in various fields such as the interior design in the field of spaces interior for the public and specific buildings that is concern about the use of humans resident , as well as other considerations relating to the organization of design elements and lines of locomotors activity and the validity of appropriate receiving to provide comfort and achieve the requirements of the position in the space of restaurants field of research.
The researcher choose the title of this study (processors design career in public spaces), the analytical study of the spaces of restaurants, as one of the public spaces that are running in their general environment of people in various strata , ages and other levels , whic
Here, we found an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to convex polynomial by means of weighted Totik-Ditzian modulus of continuity
In the present paper, the concepts of a quasi-metric space, quasi-Banach space
have been introduced. We prove some facts which are defined on these spaces and
define some polynomials on quasi-Banach spaces and studied their dynamics, such
as, quasi cyclic and quasi hypercyclic. We show the existence of quasi chaotic in the
sense of Devaney (quasi D-chaotic) polynomials on quasi Banach space of qsummable
sequences lq , 0<q<1 such polynomials P is defined by P((xi)i)=(p(xi+m))i
where p:CC, p(0) = 0. In general we also prove that P is quasi chaotic in the sense
of Auslander and Yorke (quasi AY-chaotic) if and only if 0 belong to the Julia set of
p, mN. And then we prove that if the above polynomial P o