Preferred Language
Articles
/
jxf2UZEBVTCNdQwCrZTk
Optimizing Task Scheduling and Resource Allocation in Computing Environments using Metaheuristic Methods
...Show More Authors

Optimizing system performance in dynamic and heterogeneous environments and the efficient management of computational tasks are crucial. This paper therefore looks at task scheduling and resource allocation algorithms in some depth. The work evaluates five algorithms: Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Firefly Algorithm (FA) and Simulated Annealing (SA) across various workloads achieved by varying the task-to-node ratio. The paper identifies Finish Time and Deadline as two key performance metrics for gauging the efficacy of an algorithm, and a comprehensive investigation of the behaviors of these algorithms across different workloads was carried out. Results from the experiments reveal unique patterns in algorithmic behaviors by workload. In the 15-task and 5-node scenario, the GA and PSO algorithms outclass all others, completing 100 percent of tasks before deadlines, Task 5 was a bane to the ACO algorithm. The study proposes a more extensive system that promotes an adaptive algorithmic approach based on workload characteristics. Numerically, the GA and PSO algorithms triumphed completing 100 percent of tasks before their deadlines in the face of 10 tasks and 5 nodes, while the ACO algorithm stumbled on certain tasks. As it is stated in the study, The above-mentioned system offers an integrated approach to ill-structured problem of task scheduling and resource allocation. It offers an intelligent and aggressive scheduling scheme that runs asynchronously when a higher number of tasks is submitted for the completion in addition to those dynamically aborts whenever system load and utilization cascade excessively. The proposed design seems like full-fledged solution over project scheduling or resource allocation issues. It highlights a detailed method of the choice of algorithms based on semantic features, aiming at flexibility. Effects of producing quantifiable statistical results from the experiments on performance empirically demonstrate each algorithm performed under various settings.

Scopus Crossref
View Publication
Publication Date
Thu Mar 01 2007
Journal Name
Journal Of Engineering
DEWAXING OF DISTILLATE OIL FRACTION (400- 500 ºC) USING UREA
...Show More Authors

De-waxing of lubricating oil distillate (400-500 ºC) by using urea was investigated in the present study. Lubricating oil distillate produced by vacuum distillation and refined by furfural extraction was taken from Al-Daura refinery. This oil distillate has a pour point of 34 ºC. Two solvents were used to dilute the oil distillate, these are methyl isobutyl ketone and methylene chloride. The operating conditions of the urea adduct formation with n-paraffins in the presence of methyl isobutyl ketone were studied in details, these are solvent to oil volume ratio within the range of 0 to 2, mixer speed 0 to 2000 rpm, urea to wax weight ratio 0 to 6.3, time of adduction 0 to 71 min and temperature 30-70 ºC). Pour point of de-waxed oil and yi

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 09 2018
Journal Name
Baghdad Science Journal
Pose Invariant Palm Vein Identification System using Convolutional Neural Network
...Show More Authors

Palm vein recognition is a one of the most efficient biometric technologies, each individual can be identified through its veins unique characteristics, palm vein acquisition techniques is either contact based or contactless based, as the individual's hand contact or not the peg of the palm imaging device, the needs a contactless palm vein system in modern applications rise tow problems, the pose variations (rotation, scaling and translation transformations) since the imaging device cannot aligned correctly with the surface of the palm, and a delay of matching process especially for large systems, trying to solve these problems. This paper proposed a pose invariant identification system for contactless palm vein which include three main

... Show More
View Publication Preview PDF
Scopus (24)
Crossref (2)
Scopus Crossref
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
Solve the fuzzy Assignment problem by using the Labeling method
...Show More Authors

The Assignment model is a mathematical model that aims to express a real problem facing factories and companies which is characterized by the guarantee of its activity in order to make the appropriate decision to get the best allocation of machines or jobs or workers on machines in order to increase efficiency or profits to the highest possible level or reduce costs or time To the extent possible, and in this research has been using the method of labeling to solve the problem of the fuzzy assignment of real data has been approved by the tire factory Diwaniya, where the data included two factors are the factors of efficiency and cost, and was solved manually by a number of iterations until reaching the optimization solution,

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Robust Estimation OF The Partial Regression Model Using Wavelet Thresholding
...Show More Authors

            Semi-parametric regression models have been studied in a variety of applications and scientific fields due to their high flexibility in dealing with data that has problems, as they are characterized by the ease of interpretation of the parameter part while retaining the flexibility of the non-parametric part. The response variable or explanatory variables can have outliers, and the OLS approach have the sensitivity to outliers. To address this issue, robust (resistance) methods were used, which are less sensitive in the presence of outlier values in the data. This study aims to estimate the partial regression model using the robust estimation method with the wavel

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Mar 01 2011
Journal Name
Al-khwarizmi Engineering Journal
Noise Removal of ECG Signal Using Recursive Least Square Algorithms
...Show More Authors

This paper shows an approach for Electromyography (ECG) signal processing based on linear and nonlinear adaptive filtering using Recursive Least Square (RLS) algorithm to remove two kinds of noise that affected the ECG signal. These are the High Frequency Noise (HFN) and Low Frequency Noise (LFN). Simulation is performed in Matlab. The ECG, HFN and LFN signals used in this study were downloaded from ftp://ftp.ieee.org/uploads/press/rangayyan/, and then the filtering process was obtained by using adaptive finite impulse response (FIR) that illustrated better results than infinite impulse response (IIR) filters did.

View Publication Preview PDF
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Treatment of Dairy Wastewater by Electrocoagulation using Iron Filings Electrodes
...Show More Authors

This study investigated the treatment of dairy wastewater using the electrocoagulation method with iron filings as electrodes. The study dealt with real samples collected from local factory for dairy products in Baghdad. The Response Surface Methodology (RSM) was used to optimize five experimental variables at six levels for each variable, for estimating chemical oxygen demand (COD) removal efficiency. These variables were the distance between electrodes, detention time, dosage of NaCl as electrolyte, initial COD concentration, and current density. RSM was investigated the direct and complex interaction effects between parameters to estimate the optimum values. The respective optimum value was 1 cm for the distance between electrodes, (6

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Apr 01 2018
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Information Hiding using LSB Technique based on Developed PSO Algorithm
...Show More Authors

<p>Generally, The sending process of secret information via the transmission channel or any carrier medium is not secured. For this reason, the techniques of information hiding are needed. Therefore, steganography must take place before transmission. To embed a secret message at optimal positions of the cover image under spatial domain, using the developed particle swarm optimization algorithm (Dev.-PSO) to do that purpose in this paper based on Least Significant Bits (LSB) using LSB substitution. The main aim of (Dev. -PSO) algorithm is determining an optimal paths to reach a required goals in the specified search space based on disposal of them, using (Dev.-PSO) algorithm produces the paths of a required goals with most effi

... Show More
View Publication
Scopus (18)
Crossref (5)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
International Journal Of Machine Learning And Computing
Facial Emotion Recognition from Videos Using Deep Convolutional Neural Networks
...Show More Authors

Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.

View Publication Preview PDF
Scopus (56)
Crossref (40)
Scopus Crossref
Publication Date
Wed Apr 01 2020
Journal Name
Plant Archive
Genetic analysis of sorghum cultivars from USA using SSR markers
...Show More Authors

Scopus (11)
Scopus
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
The Prediction of COVID 19 Disease Using Feature Selection Techniques
...Show More Authors
Abstract<p>COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in </p> ... Show More
View Publication Preview PDF
Scopus (31)
Crossref (24)
Scopus Crossref