Electronic remote identification (ER-ID) is a new radio frequency (RF) technology that is initiated by the Federal Aviation Authorities (FAA). For security reasons, traffic control, and so on, ER-ID has been applied for drones by the FAA to enable them to transmit their unique identification and location so that unauthorized drones can be identified. The current limitation of the existing ER-ID algorithms is that the application is limited to the Wi-Fi and Bluetooth wireless controllers, which results in a maximum range of 10–20 m for Bluetooth and 50–100 m for Wi-Fi. In this study, a mathematical computing technique based on finite state automaton (FSA) is introduced to expand the range of the ER-ID RF system and reduce the energy required by the drone to use the technology. A finite number of states have been designed to include a larger range of wireless network techniques, enabling the drones to be recognized while they are further away and in remote areas. This is achieved by including other means of RF channels, such as 4G/5G, Automatic Dependent Surveillance-Broadcast (ADS-B), long range Internet of things (IoT), and satellite communications, in the suggested ER-ID algorithm of this study. The introduced algorithm is tested via a case study. The results showed the ability to detect drones using all types of available radio frequency communication systems (RF-CS) while also minimizing the consumed energy. Hence, the authorities can control the licensed drones by using available RF-CS devices, such as Bluetooth and Wi-Fi, which are already widely used for mobile phones, as an example.
Based on the diazotization reaction of 4-aminoacetophenone with sodium nitrite in acid medium to form diazonium salt, which was coupled with Methyldopa to form a violet reddish soluble azo dye with maximum absorbance at 560 nm,a batch procedure had been developed for the estamination of Methyldopa. Under optimum experimental parameters affecting on the development and stability of the colored product, Beer´s law obeyed in the range (0.5-45) ?g.ml-1 with a correlation coefficient (0.9979).The proposed method was successfully applied to the determination of Methyldopa in either pure form and in commercial brands of pharmaceuticals, no interference was observed from common excipients in the formulations. The analytical results obtained by app
... Show MoreIn this article, we will present a quasi-contraction mapping approach for D iteration, and we will prove that this iteration with modified SP iteration has the same convergence rate. At the other hand, we prove that the D iteration approach for quasi-contraction maps is faster than certain current leading iteration methods such as, Mann and Ishikawa. We are giving a numerical example, too.
In this article, performing and deriving te probability density function for Rayleigh distribution is done by using ordinary least squares estimator method and Rank set estimator method. Then creating interval for scale parameter of Rayleigh distribution. Anew method using is used for fuzzy scale parameter. After that creating the survival and hazard functions for two ranking functions are conducted to show which one is beast.
In this work the analysis of laser beam profile system ,using a two dimensional CCD (Charge Coupled Device) arrays, is established. The system is capable of producing video graphics that give a two dimensional image of laser beam. The video graphics system creates color distribution that represent the intensity distribution of the laser beam or the energy profile of the beam. The software used is capable of analyzing and displaying the profile in four different methods that is , color code intensity contouring , intensity shareholding, intensity cross section along two dimension x-y, and three dimensional plot of the beam intensity given in the same display.
Gas hydrate formation poses a significant threat to the production, processing, and transportation of natural gas. Accurate predictions of gas hydrate equilibrium conditions are essential for designing the gas production systems at safe operating conditions and mitigating the problems caused by hydrates formation. A new hydrate correlation for predicting gas hydrate equilibrium conditions was obtained for different gas mixtures containing methane, nitrogen and carbon dioxide. The new correlation is proposed for a pressure range of 1.7-330 MPa, a temperature range of 273-320 K, and for gas mixtures with specific gravity range of 0.553 to 1. The nonlinear regression technique was applie
PPSU hollow fiber nanofiltration membranes are prepared by applying two concentrations and various extrusion pressures according to the phase inversion method. Cross-sectional area and outer structures were characterized by using scanning electron microscope (SEM) and atomic force microscopy (AFM). In additional to the pore size distribution, either the mean roughness or the mean pore size of the PPSU hollow fiber surfaces was evaluated by AFM. It was found that the morphology of the PPSU fibers had both sponge-like and finger-like structures through different extrusion pressures and PPSU concentrations. The mean pore size and mean roughness for inner and outer surfaces were seen to be decreased with the increase of extrusion pressure at
... Show MoreIn this paper a dynamic behavior and control of a jacketed continuous stirred tank reactor (CSTR) is developed using different control strategies, conventional feedback control (PI and PID), and neural network (NARMA-L2, and NN Predictive) control. The dynamic model for CSTR process is described by a first order lag system with dead time.
The optimum tuning of control parameters are found by two different methods; Frequency Analysis Curve method (Bode diagram) and Process Reaction Curve using the mean of Square Error (MSE) method. It is found that the Process Reaction Curve method is better than the Frequency Analysis Curve method and PID feedback controller is better than PI feedback controller.
The results s
... Show More