Preferred Language
Articles
/
jperc-1518
Developing the Skill of Friendship for Kindergarten Children in the Light of Bandura's Theory Social Learning: Ministry of Education / Baghdad Directorate of Education, Al/Rusafa
...Show More Authors

The current research aims to identify the effect of the program to develop the skill of friendship among kindergarten children, as well as the scope of the impact of the program on the sample. To achieve the objectives of the research, the researcher hypothesizes there is no significant difference between the average scores of the sample members on the friendship skill scale for the dimensional scale according to the experimental and control group. The research sample consisted of (60) girl and boy with age ranges (4-6) who were randomly selected from the Kindergarten Unity at Baghdad city/ Rusafa 1. The children were distributed into an experimental and control group, each group consists of (30) girl and boy. The two groups were chosen randomly. To achieve the objectives of the research, the researcher developed a scale of friendship skills for kindergarten children and a training program. The researcher used the experimental design with partial control for the experimental and control groups of the pre-posttest. The results showed that there is a statistically significant difference between the average scores of the children of the experimental group and the control group on the scale of friendship skill in the post-test. The independent variable of the training program has an effect on the variable of the skill of friendship. The research came out with a set of recommendations and suggestions.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 13 2021
Journal Name
Iraqi Journal Of Science
Boosting E-learner’s Motivation through Identifying his/her Emotional States
...Show More Authors

The main objective of e-learning platforms is to offer a high quality instructing, training and educational services. This purpose would never be achieved without taking the students' motivation into consideration. Examining the voice, we can decide the emotional states of the learners after we apply the famous theory of psychologist SDT (Self Determination Theory). This article will investigate certain difficulties and challenges which face e-learner: the problem of leaving their courses and the student's isolation.
Utilizing Gussian blending model (GMM) so as to tackle and to solve the problems of classification, we can determine the learning abnormal status for e-learner. Our framework is going to increase the students’ moti

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
A Survey on Feature Selection Techniques using Evolutionary Algorithms
...Show More Authors

     Feature selection, a method of dimensionality reduction, is nothing but collecting a range of appropriate feature subsets from the total number of features. In this paper, a point by point explanation review about the feature selection in this segment preferred affairs and its appraisal techniques are discussed. I will initiate my conversation with a straightforward approach so that we consider taking care of features and preferred issues depending upon meta-heuristic strategy. These techniques help in obtaining the best highlight subsets. Thereafter, this paper discusses some system models that drive naturally from the environment are discussed and calculations are performed so that we can take care of the prefe

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Mon Dec 01 2014
Journal Name
International Journal Of Trade, Economics And Finance
Should Iraq Adopt IFRSs?
...Show More Authors

Abstract—Over the two past decades, the rapid integration of capital markets underlined the necessity for developing a single set of high quality international accounting standards. The growing acceptance of international accounting standards has given power for International Accounting Standards Board (IASB) to work and develop this project. Iraq is a country where its accounting practices have been influenced by different philosophies from outside and inside Iraq during its modern history. After the fall of Saddam Hussain international institutions have begun to play an important role in reshaping Iraq’s economy including its accounting for oil. This paper investigates the challenges and opportunities for Iraq in transitioning from it

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
Human recognition by utilizing voice recognition and visual recognition
...Show More Authors

Audio-visual detection and recognition system is thought to become the most promising methods for many applications includes surveillance, speech recognition, eavesdropping devices, intelligence operations, etc. In the recent field of human recognition, the majority of the research be- coming performed presently is focused on the reidentification of various body images taken by several cameras or its focuses on recognized audio-only. However, in some cases these traditional methods can- not be useful when used alone such as in indoor surveillance systems, that are installed close to the ceiling and capture images right from above in a downwards direction and in some cases people don't look straight the cameras or it cannot be added in some

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
An Artificial Intelligence-based Proactive Network Forensic Framework
...Show More Authors

     is at an all-time high in the modern period, and the majority of the population uses the Internet for all types of communication. It is great to be able to improvise like this. As a result of this trend, hackers have become increasingly focused on attacking the system/network in numerous ways. When a hacker commits a digital crime, it is examined in a reactive manner, which aids in the identification of the perpetrators. However, in the modern period, it is not expected to wait for an attack to occur. The user anticipates being able to predict a cyberattack before it causes damage to the system. This can be accomplished with the assistance of the proactive forensic framework presented in this study. The proposed system combines

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Network Traffic Prediction Based on Time Series Modeling
...Show More Authors

    Predicting the network traffic of web pages is one of the areas that has increased focus in recent years. Modeling traffic helps find strategies for distributing network loads, identifying user behaviors and malicious traffic, and predicting future trends. Many statistical and intelligent methods have been studied to predict web traffic using time series of network traffic. In this paper, the use of machine learning algorithms to model Wikipedia traffic using Google's time series dataset is studied. Two data sets were used for time series, data generalization, building a set of machine learning models (XGboost, Logistic Regression, Linear Regression, and Random Forest), and comparing the performance of the models using (SMAPE) and

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Oct 25 2022
Journal Name
Minar Congress 6
HANDWRITTEN DIGITS CLASSIFICATION BASED ON DISCRETE WAVELET TRANSFORM AND SPIKE NEURAL NETWORK
...Show More Authors

In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database

View Publication Preview PDF
Publication Date
Thu Feb 28 2019
Journal Name
Iraqi Journal Of Science
Skin Detection using Improved ID3 Algorithm
...Show More Authors

Skin detection is classification the pixels of the image into two types of pixels skin and non-skin. Whereas, skin color affected by many issues like various races of people, various ages of people gender type. Some previous researchers attempted to solve these issues by applying a threshold that depends on certain ranges of skin colors. Despite, it is fast and simple implementation, it does not give a high detection for distinguishing all colors of the skin of people. In this paper suggests improved ID3 (Iterative Dichotomiser) to enhance the performance of skin detection. Three color spaces have been used a dataset of RGB obtained from machine learning repository, the University of California Irvine (UCI), RGB color space, HSV color sp

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Arabic Cyberbullying Detection Using Support Vector Machine with Cuckoo Search
...Show More Authors

      Cyberbullying is one of the biggest electronic problems that takes multiple forms of harassment using various social media. Currently, this phenomenon has become very common and is increasing, especially for young people and adolescents. Negative comments have a significant and dangerous impact on society in general and on adolescents in particular. Therefore, one of the most successful prevention methods is to detect and block harmful messages and comments. In this research, negative Arabic comments that refer to cyberbullying will be detected using a support vector machine algorithm. The term frequency-inverse document frequency vectorizer and the count vectorizer methods were used for feature extraction, and the results wer

... Show More
View Publication Preview PDF
Scopus Crossref