Abstract [email protected] Background: Acute Traumatic Stress Disorder (ATSD) might be complicated by Post Traumatic Stress Disorder (PTSD). Psychological First Aid (PFA) said to be helpful to reduce the possibility of reduction of ASD and PTSD symptoms. PFA is simple procedure to deliver help & support to victims, may be by some one close to him, quietly and professionally. Iraq has and is still experiencing, continuous traumatic stresses. ATSD is especially seen in war such as during the Gulf War, Embargo and nowadays under the current American occupation. With the extreme shortage of recourses and the given late priority to psychological problems and intervention have disastrous consequences on the psycho-social wellbeing of people. Aims: To construct: 1. ATSD Scale (ATSDS) and 2. PFA Program (PFAP) to be used by careers. Using the null hypothesis, it was expected that there will not be significant reduction in ATSD symptoms after the implementation of PFAP. Methods: ATSD Scale was constructed using a 256 population from of both sexes with an age range 15-54 years. Diagnosis based upon DSM-IV criteria for ATSD classification. 10 female patients (23-54) year were treated individually by debriefing as part of the PFAP. Suitable and randomly referred patients were treated over; 12 biweekly sessions, for 45 minutes each session for the period from June 2003- September 03. Outcome: Both ATSD and ATSDP proved to be valid and reliable. Using Will- Coxon’s Rank Signal Test; PFAP for ATSD was effective in reducing the ATSD symptoms significantly. This result was compatible with the literature. Further studies are recommended to use; larger samples and a follow up period, as well as application of PFAP in group setting might prove to be more cost effective in massive traumatic crises and casualties like war. Keys: Acute, Aid, Debriefing, Disorder, First, Iraq, Post, Psychological, Stress, Traumatic, Treatment, War.
Optical Mark Recognition (OMR) is the technology of electronically extracting intended data from marked fields, such as squareand bubbles fields, on printed forms. OMR technology is particularly useful for applications in which large numbers of hand-filled forms need to be processed quickly and with a great degree of accuracy. The technique is particularly popular with schools and universities for the reading in of multiple choice exam papers. This paper proposed OMRbased on Modify Multi-Connect Architecture (MMCA) associative memory, its work in two phases: training phase and recognition phase. The proposed method was also able to detect more than one or no selected choice. Among 800 test samples with 8 types of grid answer sheets and tota
... Show MoreNew two experiments of the three factors, in this study were constructed to investigate the effects, of the fixed variations to the box plot on subjects' judgments of the box lengths. These two experiments were constructed as an extension to the group B experiments, the ratio experiments the experiments with two variables carried out previously by Hussin, M.M. (1989, 2006, 2007). The first experiment box notch experiment, and the second experiment outlier values experiment. Subjects were asked to judge what percentage the shorter represented of the longer length in pairs of box lengths and give an estimate of percentage, one being a standard plot and the other being of a different box lengths and
... Show MoreIn this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
Finding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over
... Show MoreIn this work, a novel design for the NiO/TiO2 heterojunction solar cells is presented. Highly-pure nanopowders prepared by dc reactive magnetron sputtering technique were used to form the heterojunctions. The electrical characteristics of the proposed design were compared to those of a conventional thin film heterojunction design prepared by the same technique. A higher efficiency of 300% was achieved by the proposed design. This attempt can be considered as the first to fabricate solar cells from highly-pure nanopowders of two different semiconductors.
This paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show MoreSustainable vegetative management plays a significant role in improving soil quality in degraded agricultural landscapes by enhancing soil microbial biomass. This study investigated the effects of grass buffers (GBs), biomass crops (BCs), grass waterways (GWWs), and agroforestry buffers (ABs) on soil microbial biomass and soil organic C (SOC) compared with continuous corn (
Correct grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show More