This research introduces a developed analytical method to determine the nominal and maximum tensile stress and investigate the stress concentration factor. The required tooth fillets parametric equations and gears dimensions have been reformulated to take into account the asymmetric fillets radiuses, asymmetric pressure angle, and profile shifting non-standard modifications. An analytical technique has been developed for the determination of tooth weakest section location for standard, asymmetric fillet radiuses, asymmetric pressure angle and profile shifted involute helical and spur gears. Moreover, an analytical equation to evaluate gear tooth-loading angle at any radial distance on the involute profile of spur and helical gears, (taking into account the effect of profile shift factor) has been derived. In addition, numerical solution for the evaluation of the maximum fillet tensile stress and the combined tensile stress concentration factor for the verification of the analytical method using computer-aided engineering software (ANSYS Version 18.1). The analytical and FE result have been compared and found to be very close. The most effective method for reducing the stress concentration factor have been found by applying negative profile shifting on asymmetric tooth with lower unloaded pressure angle and high loaded pressure angle and fillet radius, which can lead to an enhancement percentage of (20%) when using a (35o/20o) asymmetric spur gear of a (24) teeth number with a shift factor of (-0.3mo) compared with standard (20o) one.
The presented study investigated the scheduling regarding jobs on a single machine. Each job will be processed with no interruptions and becomes available for the processing at time 0. The aim is finding a processing order with regard to jobs, minimizing total completion time , total late work , and maximal tardiness which is an NP-hard problem. In the theoretical part of the present work, the mathematical formula for the examined problem will be presented, and a sub-problem of the original problem of minimizing the multi-objective functions is introduced. Also, then the importance regarding the dominance rule (DR) that could be applied to the problem to improve good solutions will be shown. While in the practical part, two
... Show MoreThe nanocomposite on the base of synthesis Copper iodide
nanoparticles and polyvinyl alcohol (PVA/CuI) with different
concentration of CuI were obtained using casting technique.
PVA/CuI polymer composite samples have been prepared and
subjected to characterizations using FTIR spectroscopy, The FTIR
spectral analysis shows remarkable variation of the absorption peak
positions with increasing CuI concentration. The obtained results by
X-ray diffraction indicated the formation of cubic CuI particles. The
effects of CuI concentrations on the optical properties of the PVA
films were studied in the region of wavelength, (190-1100) nm.
From the derivation of Tauc's relation it was found that the direct
allowed t
Maximum power point tracking (MPPT) is used in photovoltaic (PV) systems to enhance efficiency and maximize the output power of PV module, regardless the variation of temperature, irradiation, and the electrical characteristics of the load. A new MPPT system has been presented in this research, consisting of a synchronous DC-DC step-down Buck converter controlled by an Arduino microcontroller based unit. The MPPT process with Perturb and Observe method is performed with a DC-DC converter circuit to overcome the problem of voltage mismatch between the PV modules and the loads. The proposing system has high efficiency, lower cost and can be easily modified to handle more energy sources. The test results indicate that the u
... Show MoreThis paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estima
... Show MoreArtificial neural networks usage, as a developed technique, increased in many fields such as Auditing business. Contemporary auditor should cope with the challenges of the technology evolution in the business environment by using computerized techniques such as Artificial neural networks, This research is the first work made in the field of modern techniques of the artificial neural networks in the field of auditing; it is made by using thesample of neural networks as a sample of the artificial multi-layer Back Propagation neural networks in the field of detecting fundamental mistakes of the financial statements when making auditing. The research objectives at offering a methodology for the application of theartificial neural networks wi
... Show MoreOlive leaves extract is famous for its antioxidant and protective effects. In this study, the aqueous extract of Iraqi Olea europaea L. Leaves was investigated for its anti-diabetic effects against low double doses of alloxan induced Diabetes Mellitus in rats. Low double doses (75 mgKg body weight) of alloxan were injected intraperitoneally at day 1&29 of the experimental period in rats, whereas an aqueous extract of Iraqi Olea europaea L. Leaves was added continuously to their drinking water. Serum malondialdehyde concentration, total oxidative stress and oxidative stress index as oxidoreductive stress biomarker, activities of certain anti-oxidoreductive stress enzymes (glutathione peroxidase, super oxide dismutase and catalase) and concen
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreABSTRACT:
Objectives: The study aims to know the effectiveness of the educational program in the patient’s adherence to medication and diet and to know the relationship between the effectiveness of the education program and their demographic data related to the patient’s age, gender, marital status, education level, occupation, monthly income and residence.
Methodology: A quasi -experimental design study was performed on patient who attended to Gastroenterology and Hepatology Teaching Hospital, from March 2021 to September 2021. The non-probability sampling including 50 patients for case study and 30 patients for control group. The questionnaire consists of 3 parts, part one the socio
... Show More