Preferred Language
Articles
/
joe-873
Experimental Study on Heat Transfer and Flow Characteristics in Subcooled Flow Boiling in a Microchannel
...Show More Authors

The current study presents an experimental investigation of heat transfer and flow characteristic for subcooled flow boiling of deionized water in the microchannel heat sink. The test section consisted of a single microchannel having 300μm wide nominal dimensions and 300μm height (hydraulic diameter of 300μm). The test section formed of oxygen-free copper with 72mm length and 12mm width. Experimental operation conditions spanned the heat flux (78-800) kW/m2, mass flux (1700 and 2100) kg/m2.s at 31˚C subcooled inlet temperature. The boiling heat transfer coefficient is measured and compared with existing correlations. Also, the experimental pressure drop is measured and compared with microscale pressure drop correlations. The results showed that higher mass flux leads to higher boiling heat transfer coefficient, and the dominant mechanism is convective boiling. Also, the experimental pressure drop decrease with increasing heat flux in a single-phase region while it increases in a two-phase region. Comparing the experimental results in the experimental condition range, showed that an existing correlation provides a satisfactory prediction of heat transfer coefficient and pressure drop.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 15 2019
Journal Name
Al-khwarizmi Engineering Journal
Experimental and Theoretical Study of the Energy Flow of a Two Stages Four Generators Adsorption Chiller
...Show More Authors

This work is concerned with a two stages four beds adsorption chiller utilizing activated carbon-methanol adsorption pair that operates on six separated processes. The four beds that act as thermal compressors are powered by a low grade thermal energy in the form of hot water at a temperature range of 65 to 83 °C.  As well as, the water pumps and control cycle consume insignificant electrical power. This adsorption chiller consists of three water cycles. The first water cycle is the driven hot water cycle. The second cycle is the cold water cycle to cool the carbon, which adsorbs the methanol. Finally, the chilled water cycle that is used to overcome the building load. The theoretical results showed that average cycle cooling power

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri May 01 2015
Journal Name
Journal Of Engineering
Numerical Analysis of Fluid Flow and Heat Transfer by Forced Convection in Channel with one-sided Semicircular Sections and Filled with Porous Media
...Show More Authors

This research presents a numerical study to simulate the heat transfer by forced convection as a result of fluid flow inside channel’s with one-sided semicircular sections and fully filled with porous media. The study assumes that the fluid were Laminar , Steady , Incompressible and inlet Temperature was less than Isotherm temperature of a Semicircular sections .Finite difference techniques were used to present the governing equations (Momentum, Energy and Continuity). Elliptical Grid is Generated using Poisson’s equations . The Algebraic equations were solved numerically by using (LSOR (.This research studied the effect of changing the channel shapes on fluid flow and heat transfer  in two cases ,the first: cha

... Show More
View Publication Preview PDF
Publication Date
Mon May 01 2023
Journal Name
Journal Of Engineering
Experimental Investigation of Heat Transfer Enhancement in a Double Pipe Heat Exchanger Using Compound Technique of Transverse Vibration and Inclination Angle
...Show More Authors

Numerous tests are recently conducted to assess vibration's role in accelerating the heat transfer rate in various heat exchangers. In this work, the enhancement of heat transfer by the effect of transfer vibration and inclination angles on the surface of a double pipe heat exchanger experimentally has been investigated. A data acquisition system is applied to record the data of temperatures, flow rates, and frequencies over the tests. A compound technique was adopted, including the application of a set of inclination angles of (0°, 10°, 20°, and 30°) under the effect of frequency of vibration ranging from sub-resonance to over-resonance frequencies. The results showed that the overall heat transfer coefficient enhan

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Mar 30 2013
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Theoretical Study on Heat Transfer in the Presence of Fouling
...Show More Authors

The fouling depositions of crude oil stream were studied theoretically in a shell and tube heat exchanger to investigate the effect of depositions on the heat transfer process. The employed heat exchanger was with steam flowing in the inner tubes and crude oil in the shell at different velocities and bulk temperatures. It is assumed that fouling occurs only on the heated stream side (crude oil). The analysis was carried out for turbulent flow heat transfer conditions with wide range of Reynolds number, bulk temperature and time. Many previously proposed models for fouling resistance were employed to estimate a new model for fouling rate. It is found that the fouling rate and consequently the heat transfer coefficient were affected by Rey

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
EXPERIMENTAL STUDY OF AIR FLOW RATE EFFECTS ON HUMIDIFICATION PARAMETERS WITH PREHEATING AND DEHUMIDIFICATION PROCESS CHANGING
...Show More Authors

This research study experimentally the effect of air flow rate on humidification process
parameters. Experimental data are obtained from air conditioning study unit T110D. Results obtained
from experimental test, calculations and psychometrics software are discussed. The effect of air flow rate
on steam humidification process parameters as a part of air-conditioning processes can be explained
according to obtained results. Results of the steam humidification processes (1,2) with and without
preheating with 5A and 7.5A shows decreasing in dry bulb temperature, humidity ratio, and heat add to
moist air with increasing air flow rate, but humidification load, and total energy of moist air increase with
increasing air flo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Thermal Sciences
Experimental and numerical investigations of heat transfer enhancement in shell and helically microtube heat exchanger using nanofluids
...Show More Authors

View Publication
Scopus (42)
Crossref (39)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Engineering
Numerical Study of Heat Transfer Enhancement in Heat Exchanger Using AL2O3 Nanofluids
...Show More Authors

In this study, the flow and heat transfer characteristics of Al2O3-water nanofluids for a range of the Reynolds number of 3000, 4500, 6000 and 7500 with a range of volume concentration of 1%, 2%, 3% and 4% are studied numerically. The test rig consists of cold liquid loop, hot liquid loop and the test section which is counter flow double pipe heat exchanger with 1m length. The inner tube is made of smooth copper with diameter of 15mm. The outer tube is made of smooth copper with diameter of 50mm. The hot liquid flows through the outer tube and the cold liquid (or nanofluid) flow through the inner tube. The boundary condition of this study is thermally insulated the outer wall with uniform velocity a

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
EXPERIMENTAL INVESTIGATION OF LAMINAR NATURAL CONVECTION HEAT TRANSFER IN A RECTANGULAR ENCLOSURE WITH AND WITHOUT INSIDE PARTITIONS
...Show More Authors

Experimental study has been conducted for laminar natural convection heat transfer of air flow through a rectangular enclosure fitted with vertical partition. The partition was oriented parallel to the two vertical isothermal walls with different temperatures, while all the other surfaces of the enclosure were insulated. In this study a test rig has been designed and constructed to allow studying the effect of Rayleigh number, aperture height ratio, partition thickness, the position of aperture according to the side walls and according to the height, the position of the partition according to the hot wall, and partition inclination. The experiments were carried out with air as the working fluid for Rayleigh number range (5*107 – 1.3*10

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Investigation of Optimum Heat Flux Profile Based on the Boiling Safety Factor
...Show More Authors

An experimental study is conducted to investigate the effect of heat flux distribution on the boiling safety factor of its cooling channel. The water is allowed to flow in a horizontal circular pipe whose outlet surface is subjected to different heat flux profiles. Four types of heat flux distribution profiles are used during experiments: (constant distribution profile, type a, triangle distribution profile with its maximum in channel center, type b, triangle distribution profile with its maximum in the channel inlet, type c, and triangle distribution profile with its maximum in the channel outlet, type d). The study is conducted using heat sources of (1000 and 2665W), water flow rates of (5, 7 and 9 lit/min). The water

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 27 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Experimental study of natural convection heat transfer on an enclosure partially filled porous medium heated from below by constant heat flux
...Show More Authors

This study reports on natural convection heat transfer in a square enclosure of length (L=20 cm) with a saturated porous medium (solid glass beads) having same fluid (air) at lower horizontal layer and free air fill in the rest of the cavity's space. The experimental work has been performed under the effects of heating from bottom by constant heat flux q=150,300,450,600 W/m2 for four porous layers thickness Hp (2.5,5,7.5,1) cm and three heaters length δ(20,14,7) cm. The top enclosure wall was good insulated and the two side walls were symmetrically cooled at constant temperature. Four layers of porous media with small porosity, Rayleigh number range (60.354 - 241.41) and (Da) 3.025x10-8 has been investigated. The obtained data of temperatu

... Show More
View Publication
Scopus Crossref