The current study presents an experimental investigation of heat transfer and flow characteristic for subcooled flow boiling of deionized water in the microchannel heat sink. The test section consisted of a single microchannel having 300μm wide nominal dimensions and 300μm height (hydraulic diameter of 300μm). The test section formed of oxygen-free copper with 72mm length and 12mm width. Experimental operation conditions spanned the heat flux (78-800) kW/m2, mass flux (1700 and 2100) kg/m2.s at 31˚C subcooled inlet temperature. The boiling heat transfer coefficient is measured and compared with existing correlations. Also, the experimental pressure drop is measured and compared with microscale pressure drop correlations. The results showed that higher mass flux leads to higher boiling heat transfer coefficient, and the dominant mechanism is convective boiling. Also, the experimental pressure drop decrease with increasing heat flux in a single-phase region while it increases in a two-phase region. Comparing the experimental results in the experimental condition range, showed that an existing correlation provides a satisfactory prediction of heat transfer coefficient and pressure drop.
This study aims at suggesting flow as a strategy for training female EFL student-teachers in the teaching training course and finding out the effect of this strategy on their performance and their flow state. The training course syllabuses will be constructed according to the flow nine factors and the teaching skills. The measurement tools are the student-teacher performance checklist that has already been used by the department of English language and SHORT Flow State Scale (S FSS-2). The study population is represented with the (60) female student-teachers/ fourth stage/ evening studies at theEnglish department /college of education for women/the University of Baghdad. The study is used the experimental design in that (30) of the student-
... Show MoreA new laboratory study conducted on stepped spillways in order to investigate their efficiency of dissipating flow energy. All previous study on stepped spillway indicated that the flow energy dissipation decreased as increasing in discharge. Increasing in the step numbers and the spillway slope led to energy dissipation decrease. In this study, an experimental attempt to increase energy dissipation at variable discharges was performed on stepped spillway and that leads to decreasing the cost of initiating the stilling basin or may be ignoring it. Five spillways were constructed from concrete and tested to investigate and compare among them. Three were roughed by gravel with different size for each one, one of them was s
... Show MoreExperimental and numerical studies have been conducted on the effects of bed roughness elements such as cubic and T-section elements that are regularly half-channel arrayed on one side of the river on turbulent flow characteristics and bed erosion downstream of the roughness elements. The experimental study has been done for two types of bed roughness elements (cubic and T-section shape) to study the effect of these elements on the velocity profile downstream the elements with respect to different water flow discharges and water depths. A comparison between the cubic and T-section artificial bed roughness showed that the velocity profile downstream the T-section increased in smooth side from the river and decrease in the rough side
... Show MoreAn experimental and theoretical analysis was conducted for simulation of open circuit cross flow heat
exchanger dynamics during flow reduction transient in their secondary loops. Finite difference
mathematical model was prepared to cover the heat transfer mechanism between the hot water in the
primary circuit and the cold water in the secondary circuit during transient course. This model takes under
consideration the effect of water heat up in the secondary circuit due to step reduction of its flow on the
physical and thermal properties linked to the parameters that are used for calculation of heat transfer
coefficients on both sides of their tubes. Computer program was prepared for calculation purposes which
cover a
The heat and mass transfer coefficients of the indirect contact closed circuit cooling tower, ICCCCT, were investigated experimentally. Different experiments were conducted involving the controlling parameters such as air velocity, spray water to air mass flow rate ratio, spray water flow rate, ambient air wet bulb temperature and the provided heat load to investigate their effects on the performance of the ICCCCT. Also the effect of using packing on the performance of the ICCCCT was investigated. It was noticed that these parameters affect the tower performance and the use of packing materials is a good approach to enhance the performance for different operational conditions. Correlations for mass and heat transfer coefficients are pres
... Show MoreConvection heat transfer in a horizontal channel provided with metal foam blocks of two numbers of pores per unit of length (10 and 40 PPI) and partially heated at a constant heat flux is experimentally investigated with air as the working fluid. A series of experiments have been carried out under steady state condition. The experimental investigations cover the Reynolds number range from 638 to 2168, heat fluxes varied from 453 to 4462 W/m2, and Darcy number 1.77x10-5, 3.95x10-6. The measured data were collected and analyzed. Results show that the wall temperatures at each heated section are affected by the imposed heat flux variation, Darcy number, and Reynolds number variation. The var
... Show MoreThe simulation have been made for 3D flow structure and heat transfer with and without
longitudinal riblet upstream of leading edge vane endwall junction of first stage nozzle guide vane .The research explores concept of weakening the secondary flows and reducing their harmful effects.Numerical investigation involved examination of the secondary flows ,velocity and heat transfer rates by solving the governing equations (continuity, Navier -stokes and energy equations ) using the known package FLUENT version (12.1).The governing equations were solved for three dimentional, turbulent flowe, incompressible with an appropriate turbulent model (k-ω,SST) .The numerical solution was carried out for 25 mode
... Show MoreIn this research, an experimental study was conducted to high light the impact of the exterior shape of a cylindrical body on the forced and free convection heat transfer coefficients when the body is hold in the entrance of an air duct. The impact of changing the body location within the air duct and the air speed are also demonstrated. The cylinders were manufactured with circular, triangular and square sections of copper for its high thermal conductivity with appropriate dimensions, while maintaining the surface area of all shapes to be the same. Each cylinder was heated to a certain temperature and put inside the duct at certain locations. The temperature of the cylinder was then monitored. The heat transfer coefficient were then cal
... Show More