Tests were performed on asphalt concrete specimens with (101.6 mm in diameter and 101.6 mm in height), and the results were implemented for calculating permanent deformation and resilient modulus under repeated compressive stress with different levels of stresses (0.068, 0.138 and 0.206) MPa at 40 ºC. Two types of additives namely (carbon black-asphalt) and (SBR-asphalt) were tried as rejuvenators with three percentages of (0.5, 1 and 1.5) % by weight of asphalt cement along with two ratios of AC (1 and 2) % have been implemented as rejuvenator and blended with the reclaimed asphalt concrete. Aged materials were obtained from the site. 100% Reclaimed Asphalt Pavement material from the reclaimed mixture is implemented. A set of (3) specimens were prepared for every mixture; three specimens were tested under (repeated compressive stress) at each level of stress. The objective of this work was to study the effect of two types of additives (Styrene-Butadiene-Rubber (SBR) and carbon black) on the performance of recycled asphalt concrete mixture. It was concluded that the Resilient modulus (Mr) at (0.138 and 0.206) MPa stress level decreases by (14, 22 and 8) % and (22, 34 and 11) for reclaimed and recycle mixtures with (carbon black-asphalt and SBR-asphalt) respectively when compared with that at 0.068 MPa. Permanent deformation for recycled mixtures with (carbon black-asphalt and SBR-asphalt) increased by (65.9, 4.54) %, (146.6, 27.2) % and (79, 5.5) % at level of stresses (0.068, 0.138 and 0.206) MPa respectively when compared to reclaimed mixture.
I mpact strength for Epoxy/Polyurethane, Blends and their composites with two
layers of Glass fibers (0-90) are calculated.
The impact strength of the blends and composites decrease with increasing weight
by weisht percentage of polyurethane . This result is attributed to the high elasticity
of PU , and to the immiscibility between the polymer blends as well as the fiber
delaminates
This study was done to investigate the impact of different nanoparticles on diesel fuel characteristics, Iraqi diesel fuel was supplied from al-Dura refinery and was treated to enhance performance by improving its characteristics. Two types of nanoparticles were mixed with Iraqi diesel fuel at various weight fractions of 30, 60, 90, and 120 ppm. The diesel engine was tested and run at a constant speed of 1600 rpm to examine and evaluate the engine's performance and determine emissions. In general, ZnO additives' performance analysis showed they are more efficient for diesel fuel engines than CeO. The performance of engine diesel fuel tests showed that the weight fraction of nanoparticles at 90 and 120 ppm give a similar performance,
... Show MoreThis study was done to investigate the impact of different nanoparticles on diesel fuel characteristics, Iraqi diesel fuel was supplied from al-Dura refinery and was treated to enhance performance by improving its characteristics. Two types of nanoparticles were mixed with Iraqi diesel fuel at various weight fractions of 30, 60, 90, and 120 ppm. The diesel engine was tested and run at a constant speed of 1600 rpm to examine and evaluate the engine's performance and determine emissions. In general, ZnO additives' performance analysis showed they are more efficient for diesel fuel engines than CeO. The performance of engine diesel fuel tests showed that the weight fraction of nanoparticles at 90 and 120 ppm give a similar
... Show MoreThe high viscosity of heavy oil is a crucial factor that strongly affects its up-stream recovering, down-stream surface transporting and refining processes. Economical methods for recovering the heavy oil and reducing is very important and related to capital and/or operating cost. This research studies the treatment of Iraqi heavy crude oil, which characterize with high viscosity and low API which makes transportation of heavy crude oil a difficult mission, needs for treatment to reduce viscosity for facilitating transportation and processing. Iraqi heavy crude oil was used Sharqi Baghdad, which obtained from Baghdad east oil fields with API 22.2º.Many kinds of additives were used to reduce the viscosity, experiments were performed o
... Show MoreThe loss of dental hard tissue as a result of odontoclastic activity is known as root resorption. It is unwanted and pathological in permanent teeth. Root resorption may happen within the root canal called internal root resorption or on the outer surface of the root called external root resorption. Regardless of where it occurs, root resorption is irreparable, can cause pain for the patient, necessitates treatment, and in some circumstances, resulting in the early loss of the affected tooth. It might be challenging to precisely diagnose and treat root resorption. There is limited information within literatures on root resorption therefore this review aims to understand the radiological and clinical characteristics of r
... Show MoreThe Effect of Chicken Eggshell Extract on Microhardness of Artificially Induced Dental Erosion in Permanent Teeth (In Vitro Study), Shatha A Abbas*, Alhan A Qasim
This research utilized natural asphalt (NA) deposits from sulfur springs in western Iraq. Laboratory tests were conducted to evaluate the performance of an asphalt mixture incorporating NA and verify its suitability for local pavement applications. To achieve this, a combination of two types of NA, namely soft SNA and hard HNA, was blended to create a binder known as Type HSNA. The resulting HSNA exhibited a penetration grade that adhered to Iraqi specifications. Various percentages of NA (20%, 40%, 60%, and 80%) were added to petroleum asphalt. The findings revealed enhanced physical properties of HSNA, which also satisfied the requirements outlined in the Iraqi specifications for asphalt cement.
Consequently, HS
... Show MoreThe primary objective of this study is to manage price market items in the construction of walls for affordable structures with load-bearing hollow masonry units using the ACI 211.1 blend design with a slump range of 25-50 mm that follows the specification limits of IQS 1077. It was difficult to reach a suitable cement weight to minimum content (economic and environmental goal), so many trail mixtures were cast. A portion (10-20%) of the coarse aggregates was replaced with concrete, tile, and clay-brick waste. Finally, two curing methods were used: immersion under water as normal curing, and water spraying as it is closer to the field conditions. The recommendation in IQS 1077 to increase the curing period from 14 to 28 days was tak
... Show More