Recently, the development and application of the hydrological models based on Geographical Information System (GIS) has increased around the world. One of the most important applications of GIS is mapping the Curve Number (CN) of a catchment. In this research, three softwares, such as an ArcView GIS 9.3 with ArcInfo, Arc Hydro Tool and Geospatial Hydrologic Modeling Extension (Hec-GeoHMS) model for ArcView GIS 9.3, were used to calculate CN of (19210 ha) Salt Creek watershed (SC) which is located in Osage County, Oklahoma, USA. Multi layers were combined and examined using the Environmental Systems Research Institute (ESRI) ArcMap 2009. These layers are soil layer (Soil Survey Geographic SSURGO), 30 m x 30 m resolution of Digital Elevation Model (DEM), land use layer (LU), “Look–Up tables” and other layers resulted from running the software. Curve Number which expresses a catchment’s response to a storm event has been estimated in this study to each land parcel based on LU layer and soil layer within each parcel. The results showed that a CN of 100 (dark Blue) means surface water. The high curve numbers (100 -81) (Blue and light Blue) corresponding to urbanized areas means high runoff and low infiltration; whereas low curve numbers (77- 58) (Brown and light Brown) corresponding to the forested area means low runoff and high infiltration. Four classes of land cover have been identified; these are surface water, medium residential, forest and agriculture.
In this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect
... Show MoreThe acceptance sampling plans for generalized exponential distribution, when life time experiment is truncated at a pre-determined time are provided in this article. The two parameters (α, λ), (Scale parameters and Shape parameters) are estimated by LSE, WLSE and the Best Estimator’s for various samples sizes are used to find the ratio of true mean time to a pre-determined, and are used to find the smallest possible sample size required to ensure the producer’s risks, with a pre-fixed probability (1 - P*). The result of estimations and of sampling plans is provided in tables.
Key words: Generalized Exponential Distribution, Acceptance Sampling Plan, and Consumer’s and Producer Risks
... Show MoreCupressus sempervirens L., Cupressaceae, that is known as evergreen cypress, Mediterranean cypress and in Arabic called “al -Sarw. It is an evergreen, medium sized, longevity, and wide distributed over all the world. The plant represents an important member of conifer plants which characterized with aromatic leaves and cones. Cupressus sempervirens have been ethnobotanical uses as an antiseptic, relief of cough, astringent, antispasmodic, wound healing and anti-inflammatory. Aims of this work are phytochemical analysis, isolation and structural identification of Quercitroside (quercitrin) and essential oil in Iraqi C. sempervirens. Isolation of quercitrin was
... Show MoreThis paper concerns with deriving and estimating the reliability of the multicomponent system in stress-strength model R(s,k), when the stress and strength are identical independent distribution (iid), follows two parameters Exponentiated Pareto Distribution(EPD) with the unknown shape and known scale parameters. Shrinkage estimation method including Maximum likelihood estimator (MLE), has been considered. Comparisons among the proposed estimators were made depending on simulation based on mean squared error (MSE) criteria.
In this paper, Bayes estimators for the shape and scale parameters of Weibull distribution have been obtained using the generalized weighted loss function, based on Exponential priors. Lindley’s approximation has been used effectively in Bayesian estimation. Based on theMonte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s).
This paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).
This study was established to investigate the correlation between the expression of matrix metalloproteinases (MMP-1) and the pathogenesis of osteoarthritis (OA). Blood samples were collected from 55 female patients with inflammatory OA and controls for estimation of serum (MMP-1) levels. In the current study, there is significant increase (p<0.001) in the mean of serum MMP-1 levels in osteoarthritis females (4027.73 ± 1345.28 pg/ml) than that in control females (798.76 ± 136.79 pg/ml). It was concluded that MMP-1 may be associated with the pathogenesis of osteoarthritis.
This paper interest to estimation the unknown parameters for generalized Rayleigh distribution model based on censored samples of singly type one . In this paper the probability density function for generalized Rayleigh is defined with its properties . The maximum likelihood estimator method is used to derive the point estimation for all unknown parameters based on iterative method , as Newton – Raphson method , then derive confidence interval estimation which based on Fisher information matrix . Finally , testing whether the current model ( GRD ) fits to a set of real data , then compute the survival function and hazard function for this real data.
Methods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and
... Show More