Frequently, Load associated mode of failure (rutting and fatigue) as well as, occasionally, moisture damage in some sections poorly drained are the main failure types found in some of the newly constructed road within Baghdad as well as other cities in Iraq. The use of hydrated lime in pavement construction could be one of the possible steps taken in the direction of improving pavement performance and meeting the required standards. In this study, the mechanistic properties of asphalt concrete mixes modified with hydrated lime as a partial replacement of limestone dust mineral filler were evaluated. Seven replacement rates were used; 0,0.5, 1, 1.5, 2, 2.5 and 3 percent by weight of aggregate. Asphalt concrete mixes were prepared at their optimum asphalt content and then tested to evaluate their engineering properties which include moisture damage, resilient modulus, permanent deformation and fatigue characteristics. These properties have been evaluated using indirect tensile strength, uniaxial repeated loading and repeated flexural beam tests. Mixes modified with hydrated lime were found to have improved fatigue and permanent deformation characteristics, also showed lower moisture susceptibility and high resilient modulus. The use of 2 percent hydrated lime as a partial replacement of mineral filler has added to local knowledge the ability to produce more durable asphalt concrete mixtures with better serviceability.
Objective: impact of the education program for nurses' knowledge toward children under mechanical
ventilation, and to find out the relationships between nurses' knowledge and their general information.
Methodology: Quasi experimental study was carried out at the respiratory care units of Baghdad
Pediatric Teaching Hospitals started from February15th, until September 26th, 2011, A purposive (nonprobability)
sample of (23) nurses working in the respiratory care units, were selected from Children
Welfare and Pediatric Central Teaching Hospitals. The data were gathered through using of the
constructed multiple choice questionnaire using to evaluate the nurses knowledge using checklist, The
questionnaire consists of two p
Exposure to cryogenic liquids can significantly impact the petrophysical properties of rock, affecting its density, porosity, permeability, and elastic properties. These effects can have important implications for various applications, including oil and gas production and carbon sequestration. Cryogenic liquid fracturing is a promising alternative to traditional hydraulic fracturing for exploiting unconventional oil and gas resources and geothermal energy. This technology offers several advantages over traditional hydraulic fracturing, including reduced water consumption, reduced formation damage, and a reduced risk of flow-back fluid contamination. In this study, an updated review of recent studies demonstrates how the
... Show MoreThin films of GexS1-x were fabricated by thermal evaporating under vacuum of 10-5Toor on glass substrate. The effect of increasing of germanium content (x) in sulfide films on the electrical properties like d.c conductivity (σDC), concentration of charge carriers (nH) and the activation energy (Ea) and Hall effect were investigated. The measurements show that (Ea) increases with the increasing of germanium content from 0.1to0.2 while it get to reduces with further addition, while charge carrier density (nH) is found to decrease and increase respectively with germanium content. The results were explained in terms of creating and eliminating of states in the band gap
In this work, the optical properties of Cu2S with different thickness
(1400, 2400, 4400) Ǻ have been prepared by chemical spray pyrolys
is method onto clean glass substrate heated at 283 oC ±2. The effect
of thickness on the optical properties of Cu2S has been studied. It
was found that the optical properties of the electronic transitions on
fundamental absorption edge were direct allowed and the value of the
optical energy gap of Cu2S (Eg) for direct transition decreased from
(2.4-2.1) eV with increasing of the thickness from (1400 - 4400)Ǻ
respectively. Also it was found that the absorption coefficient is
increased with increasing of thicknesses. The optical constants such<
Chitosan (CH) / Poly (1-vinylpyrrolidone-co-vinyl acetate) (PVP-co-VAc) blend (1:1) and nanocomposites reinforced with CaCO3 nanoparticles were prepared by solution casting method. FTIR analysis, tensile strength, Elongation, Young modulus, Thermal conductivity, water absorption and Antibacterial properties were studied for blend and nanocomposites. The tensile results show that the tensile strength and Young’s modulus of the nanocomposites were enhanced compared with polymer blend [CH/(PVP-co-VAc)] film. The mechanical properties of the polymer blend were improved by the addition of CaCO3 with significant increases in Young’s modulus (from 1787 MPa to ~7238 MPa) and tensile strength (from 47.87 MPa to 79.75 MPa). Strong interfacial
... Show MoreIn this work the effect of annealing temperature on the structure and the electrical properties of Bi thin films was studied, the Bi films were deposited on glass substrates at room temperature by thermal evaporation technique with thickness (0.4 µm) and rate of deposition equal to 6.66Å/sec, all samples are annealed in a vacuum for one hour. The X-ray diffraction analysis shows that the prepared samples are polycrystalline and it exhibits hexagonal structure. The electrical properties of these films were studied with different annealing temperatures, the d.c conductivity for films decreases from 16.42 ? 10-2 at 343K to 10.11?10-2 (?.cm)-1 at 363K. The electrical activation energies Ea1 and Ea2 increase from 0.031 to 0.049eV and
... Show MoreLow- and medium-carbon structural steel components face random vibration and dynamic loads (like earthquakes) in many applications. Thus a modification to improve their mechanical properties, essentially damping properties, is required. The present study focuses on improving and developing these properties, significantly dampening properties, without losing the other mechanical properties. The specimens used in the present study are structural steel ribbed bar ISO 6935 subjected to heating temperatures of (850, 950, and 1050) ˚C, and cooling schemes of annealing, normalizing, sand, and quenching was selected. The damping properties of the specimens were measured experimentally with the area under the curve for the loadi
... Show MoreNanoparticles of copper sulfide have been prepared by simple reaction between using copper nitrate with different concentrations ratio 0.1, 0.3, and 0.5 mM, thiourea by a simple chemical route. The prepared Nano powders have been deposited onto glass substrates by casting method at 60°C. The structure of the product Nano- films has been studied by x-ray diffraction, where the patterns showed that all the samples have a hexagonal structure of covellite copper sulfide with the average crystalline sizes 14.07- 16.51 nm. The morphology has been examined by atomic force microscopy, and field emission scan electron microscopy. The AFM images showed particles with almost spherical and rod shapes with average diameter sizes of 49.11- 90.64 nm.
... Show Morepriorities of materials research due to their promising properties, especially in the field of thermoelectricity. The efficiency or performance of thermoelectric devices is expressed in terms of the thermoelectric figure-of-merit (ZT) – a standard indicator of a material’s thermoelectric properties for use in cooling systems. The evaluation of ZT is principally determined by the thermoelectric characteristics of the nanomaterials. In this paper, a set of investigative computations was performed to study the thermoelectric properties of monolayer TMDCs according to the semiclassical treatment of the Boltzmann transport equation. It was confirmed that the thermoelectric properties of 2D materials can be greatly improved compared with thei
... Show More