The present work investigates the effect of magneto – hydrodynamic (MHD) laminar natural convection flow on a vertical cylinder in presence of heat generation and radiation. The governing equations which used are Continuity, Momentum and Energy equations. These equations are transformed to dimensionless equations using Vorticity-Stream Function method and the resulting nonlinear system
of partial differential equations are then solved numerically using finite difference approximation. A thermal boundary condition of a constant wall temperature is considered. A computer program (Fortran 90) was built to calculate the rate of heat transfer in terms of local Nusselt number, total mean Nusselt number, velocity distribution as well as temperature distribution for a selection of parameters sets
consisting of dimensionless heat generation parameter (0.0 ≤ Q ≤ 2.0), conduction – radiation parameter (0.0 ≤ N ≤ 10.0), and the dimensionless magneto hydrodynamic parameter (0.0 ≤ M ≤ 1.0). Numerical solution have been considered for a fluid Prandtl number fixed at (Pr=0.7), Rayleigh number (102 ≤ ≤ 105 ) l Ra . The results are shown reasonable representation to the relation between Nusselt number and Rayleigh number with other parameters (M, N and Q). Generally, Nu increase with increasing Ra, M, N and Q separately. When the MHD, N, and Q effect added to the heat transfer mechanism, the heat transfer rate increased and this effect increased with increasing in Ra, MHD, N, and Q. The effect of magneto hydrodynamic, heat generation and heat radiation on the rate of heat transfer is concluded by correlation
equations. The results are found to be in good agreement compared with the results of other researchers.
Background: As the development of zirconia crown using CAD/CAM technology, the usage of full zirconia crown is gradually increased. The aim of this in-vitro study was to evaluate and contrast the vertical marginal fit of single all-ceramic translucent zirconia crowns constructed from different brands translucent zirconia blanks. Materials and Methods: An acrylic resin model of a left maxillary premolar was prepared all around the tooth with (1 mm) depth and 3D scanning to get fifteen STL files, then distributed into three groups (Imes-icor, Whitepeaks and Dental direct), 3D scanning and milling machine by Imes-icor CAD/CAM devise. Marginal gaps along vertical planes were measured at four indentations at the (mid mesial, mid distal, mid bucc
... Show MoreMagneto-rheological (MR) valve is one of the devices generally used to control the speed of Hydraulic actuator of MR fluid. The performance of valve depends on the magnetic circuit design. Present study deals with a new design of MR valve. A mathematical model for the MR valve is developed and the simulation is carried out to evaluate the newly developed MR valve. The design of the magnetic circuit is accomplished by magnetic finite element software such as Finite Element Method Magnetic (FEMMR). The model dimensions of MR valve, material properties are taken into account. The results of analysis are presented in terms of magnetic strength H and magnetic flux density B. The simulation results based on the proposed model indicate that the ef
... Show MoreDifferent bremsstrahlung spectra from tungsten anode x-ray tube generated at 30, 40 and 50 kV have been examined theoretically and experimentally for an attempt to find a most suitable spectrum to radiograph a test object of 0.01 cm thickness of Cu and Ag. The high contrast using this suitable spectrum is demonstrated and the possible effects of fluorescent radiation are discussed.
A design for a photovoltaic-thermal (PVT) assembly with a water-cooled heat sink was planned, constructed, and experimentally evaluated in the climatic conditions of the southern region of Iraq during the summertime. The water-cooled heat sink was applied to thermally manage the PV cells, in order to boost the electrical output of the PVT system. A set of temperature sensors was installed to monitor the water intake, exit, and cell temperatures. The climatic parameters including the wind velocity, atmospheric pressure, and solar irradiation were also monitored on a daily basis. The effects of solar irradiation on the average PV temperature, electrical power, and overall electrical-thermal efficiency were investigated. The findings i
... Show MoreBiodiesel production from microalgae depends on the biomass and lipid production. Both biomass and lipid accumulation is controlled by several factors. The effect of various culture media (BG11, BBM, and Urea), nutrients stress [nitrogen (N), phosphorous (P), magnesium (Mg) and carbonate (CO3)] and gamma (γ) radiation on the growth and lipid accumulation of Dictyochloropsis splendida were investigated. The highest biomass and lipid yield of D. splendida were achieved on BG11 medium. Cultivation of D. splendida in a medium containing 3000 mg L−1 N, or 160 mg L−1 P, or 113 mg L−1 Mg, or 20 mg L-1 CO3, led to enhanced growth rate. While u
... Show MoreNumerical simulations have been carried out on the solar chimney power plant systems. This paper gives the flow field analysis for a solar chimney power generation project located in Baghdad. The continuity, Naver-stockes, energy and radiation transfer equations have been solved and carried out by Fluent software. The governing equations are solved for incompressible, 3-D, steady state, turbulent is approximated by a standard k - model with Boussiuesq approximation to study and evaluate the performance of solar chimney power plant in Baghdad city of Iraq. The different geometric parameters of project are assumed such as collector diameter and chimney height at different working conditions of solar radiation intensity (300,450,600,750
... Show MoreSimulation of free convection heat transfer in a square enclosure induced by heated thin plate is represented numerically. All the enclosure walls have constant temperature lower than the plate’s temperature. The flow is assumed to be two-dimensional. The discretized equations were solved stream function, vorticity, and energy equations by finite difference method using explicit technique and Successive Over- Relaxation method. The study was performed for different values of Rayleigh number ranging from 103 to 105 for different angle position of heated thin plate(0°, 45°, 90°). Air was chosen as a working fluid (Pr = 0.71). Aspect ratio of center of plate to the parallel left wall A2
... Show More