The piled raft is a geotechnical composite construction consisting of three elements: piles, raft and soil.
In the design of piled rafts, the load shared between the piles and the raft, and the piles are used up to a
load level that can be of the same order of magnitude as the bearing capacity of a comparable single
pile or even greater. Therefore, the piled raft foundation allows reduction of settlements in a very
economic way as compared to traditional foundation concepts.
This paper presents experimental study to investigate the behavior of piled raft system in sandy
soil. A small scale “prototype” model was tested in a sand box with load applied to the system through
a compression machine. The settlement was measured at the center of the raft, strain gages were used
to measure the strains and calculate the total load carried by piles. Four configurations of piles (2x1,
3x1, 2x2 and 3x2) were tested in the laboratory, in addition to rafts with different sizes. The effects of
pile length, pile diameter, and raft thickness on the load carrying capacity of the piled raft system are
included in the load-settlement presentation.
It was found that the percentage of the load carried by piles to the total applied load of the
groups (2x1, 3x1, 2x2, 3x2) with raft thickness of 5 mm, pile diameter of 9 mm, and pile length of 200
mm was 28% , 38% , 56% , 79% , respectively. The percent of the load carried by piles increases with
the increase of number of piles.
This research study experimentally the effect of air flow rate on humidification process
parameters. Experimental data are obtained from air conditioning study unit T110D. Results obtained
from experimental test, calculations and psychometrics software are discussed. The effect of air flow rate
on steam humidification process parameters as a part of air-conditioning processes can be explained
according to obtained results. Results of the steam humidification processes (1,2) with and without
preheating with 5A and 7.5A shows decreasing in dry bulb temperature, humidity ratio, and heat add to
moist air with increasing air flow rate, but humidification load, and total energy of moist air increase with
increasing air flo
The influence of fiber orientation and water absorption on fatigue crack growth resistance for cold cure acrylic (PMMA) reinforced by chopped and woven -glass-fibers were investigated. A weight of 2 g for chopped fibers and the same weight for woven -glass-fibers (one layer) were used to prepare samples. Some of these samples would storage in dry condition; the others were immersed in water for 15 days. Fatigue test was carried out. The results shows that, for PMMA, the initial bending stress for dry specimen was 3.392 N/cm2 and the number of cycles were 1364, the initial bending stress for wet samples was 4.20 N/cm2, and the number of cycles was 2411. The samples would cut in two pieces because of the cracks would propagated fast during
... Show More: In this study, a linear synchronous machine is compared with a linear transverse flux machine. Both machines have been designed and built with the intention of being used as the power take off in a free piston engine. As both topologies are cylindrical, it is not possible to construct either using just flat laminations and so alternative methods are described and demonstrated. Despite the difference in topology and specification, the machines are compared on a common base in terms of rated force and suitability for use as a generator. Experience gained during the manufacture of two prototypes is described.
The studies on unbonded post-tensioned concrete members strengthened with Carbon Fiber Reinforced Polymers (CFRPs) are limited and the effect of strengthening on the strain of unbonded pre-stressed steel is not well characterized. Estimating the flexural capacity of unbound post-tensioned members using the design methodology specified in the design guidelines for FRP strengthening techniques of bonded post-tensioned members does not provide a reliable evaluation. This study investigates the behavior of unbonded post-tensioned concrete members with partial strand damage (14.3% and 28.6% damage) and strengthened with CFRP laminates using a near-surface mounted technique with and without U-wrap anchorages. The experimental results show
... Show MoreOne of the challenging issues encountered during drilling operations is the lost circulation. Numerous issues might arise because of losses, such as wasting of time and higher drilling cost. Several types of lost circulation materials have been developed and are being used to limit mud losses and avoid associated issues. Each solution has benefits and drawbacks.
In this study, a core flooding test was performed to study the effectiveness of polyacrylamide (PAM) granular gel on the reduction of the circulation lost. One common type of fracture characteristic is fractures with tips, commonly known as partially open fracture (POF). However, PAM gel therapy in POFs received little attention in prior research. Models of partly open fra
... Show MoreThrough an experimental program of eighteen specimens presented in this paper, the bond strength between reinforcing bar and rubberized concrete was produced by adding waste tire rubber instead of natural aggregate. The fine and coarse aggregate was replaced in 0%, 25%, and 50% with the small pieces of a waste tire. Natural aggregate replacement ratio, rebar size, embedded rebar length, the rebar yield stress of rebar, cover, and concrete compressive strength were studied in this investigation. Ultimate bond stress, bond stress-slip response, and failure modes were presented. The experimental results reported that a reduction of 19% in bond strength was noticed in 50% replaced rubberized concrete compared with convention
... Show MoreThe study presents the test results of stabilizing gypseous soil embankment obtained from
Al- Faluja university Campus at Al-Ramady province. The laboratory investigation was divided
into three phases, The physical and chemical properties, the optimum liquid asphalt (emulsion)
requirements (which are manufactured in Iraq) were determined by using one dimensional
unconfined compression strength test.in the first phase , The optimum fluid content was 11%
(6% of emulsion with 5% water content).. At phase two, the effect of Aeration technique was
investigated using both direct shear and permeability test. At phase three for the case of static
load , the pure soil embankment model under dry test condition was investigated