The piled raft is a geotechnical composite construction consisting of three elements: piles, raft and soil.
In the design of piled rafts, the load shared between the piles and the raft, and the piles are used up to a
load level that can be of the same order of magnitude as the bearing capacity of a comparable single
pile or even greater. Therefore, the piled raft foundation allows reduction of settlements in a very
economic way as compared to traditional foundation concepts.
This paper presents experimental study to investigate the behavior of piled raft system in sandy
soil. A small scale “prototype” model was tested in a sand box with load applied to the system through
a compression machine. The settlement was measured at the center of the raft, strain gages were used
to measure the strains and calculate the total load carried by piles. Four configurations of piles (2x1,
3x1, 2x2 and 3x2) were tested in the laboratory, in addition to rafts with different sizes. The effects of
pile length, pile diameter, and raft thickness on the load carrying capacity of the piled raft system are
included in the load-settlement presentation.
It was found that the percentage of the load carried by piles to the total applied load of the
groups (2x1, 3x1, 2x2, 3x2) with raft thickness of 5 mm, pile diameter of 9 mm, and pile length of 200
mm was 28% , 38% , 56% , 79% , respectively. The percent of the load carried by piles increases with
the increase of number of piles.
The dewatering arrangement is required in execution works and it needs more attention due to the additional vertical settlement produced on the adjacent pile foundations. Raft foundations are being increasingly utilized for construction in cases of subsoil conditions with a high water table. Also, soil displacements in adjacent un-braced deep open pit may be a reason for high damages to the close buildings and foundations systems. The aim of this study is to examine the behaviour of piled raft foundations considering different pile locations under the effect of line drain and stage drilling of nearby open foundation pit. The line drain was used as dewatering process through the soil i
This research shows the experimental results of the bending moment in a flexible and rigid raft foundation rested on dense sandy soil with different embedded depth throughout 24 tests. A physical model of dimensions (200mm*200mm) and (320) mm in height was constructed with raft foundation of (10) mm thickness for flexible raft and (23) mm for rigid raft made of reinforced concrete. To imitate the seismic excitation shaking table skill was applied, the shaker was adjusted to three frequencies equal to (1Hz,2Hz, and 3Hz) and displacement magnitude of (13) mm, the foundation was located at four different embedment depths (0,0.25B = 50mm,0.5B = 100mm, and B = 200mm), where B is the raft width. Generally, the maximum bending
... Show MoreIn order to understand the effect of the number of piles (N), the history response of dynamic pile load in piled raft system and deflection time history of piled raft under repeated impact load applied on the center of piled raft resting on loose sand, laboratory model tests were conducted on small-scale models. The results of experimental work are found to be dynamic load increase with increase height of drop, the measured repeated dynamic load time history on the center of piled raft was close approximately to three a half sine wave shape with small duration in about (0.015 Sec). The maximum peak of impact loads occurs in pile and deflection time history occur after at the time of the peak repeated impact loads, dynamic pile load
... Show MoreGranular Pile Anchor (GPA) is one of the innovative foundation techniques, devised for mitigating heave of footing resulting from the expansive soils. This research attempts to study the heave behavior of (GPA-Foundation System) in expansive soil. Laboratory tests have been conducted on an experimental model in addition to a series of numerical modeling and analysis using the finite element package PLAXIS software. The effects of different parameters, such as (GPA) length (L) and diameter (D), footing diameter (B), expansive clay layer thickness (H) and presence of non-expansive clay are studied. The results proved the efficiency of (GPA) in reducing the heave of exp
... Show MoreBackground: Whey protein is the green-yellow colored, liquid portion of the milk, and it is also called the cheese serum, it is obtained after the separation of curd, during the coagulation of the milk. It contains a considerable amount of α-helix pattern with an evenly distributed hydrophobic and hydrophilic as well as basic and acidic amino acids along with their polypeptide chain. The major whey protein constituents include β-lactoglobulin (β-LG),α-lactalbumin (α-LA), immunoglobulins (IG), bovine serum albumin (BSA), bovine lactoperoxidase (LP), bovine lactoferrin (BLF) and minor amounts of a glycol macro peptide (GMP). Osseointegration can be defined as a process that is immune driven which leads to the formatio
... Show MoreGypseous soils are considered one of the most problematic soils. The skirted foundation is an alternative technology that works to improve the bearing capacity and reduce settlement. This paper investigates the use of square skirted foundations resting on gypseous soil subjected to concentric and eccentric vertical load with eccentricity values of 4, 8, and 17 mm in 16 experimental model tests. To obtain the results by using this type of foundation, a small-scale physical model was designed to obtain the load–settlement behavior of the square skirted foundation; the dimension of the square footing is 100 mm × 100 mm with 1 mm thickness, the skirt depth (
Background : It had been indentified by histological, histochemical and morphometrical studies that peganum harmala is a mammogenic herb and borage officinalis is a lactogenic one . To complete our investigation about these two herbs , we performed electron microscopical study.
Materials and methods : Rats were grouped according to their physiological status into three groups . Each group was subdivided in to three subgroups : one control and two experimental . The two experimental group were treated daily; the 1st one with an aqueous extract of peganum harmala seeds and the 2nd with an aqueous extract of borage officinalis flowers . After two weeks of treatment , mammary glands were employed for electron
Background : It had been indentified by histological, histochemical and morphometrical studies that peganum harmala is a mammogenic herb and borage officinalis is a lactogenic one . To complete our investigation about these two herbs , we performed electron microscopical study . Materials and methods : Rats were grouped according to their physiological status into three groups . Each group was subdivided in to three subgroups : one control and two experimental . The two experimental group were treated daily; the 1st one with an aqueous extract of peganum harmala seeds and the 2nd with an aqueous extract of borage officinalis flowers . After two weeks of treatment , mammary glands were employed for electron microscopical study . Resu
... Show MoreThis paper deals with load-deflection behavior the jointed plain concrete pavement system using steel dowel bars as a mechanism to transmit load across the expansion joints. Experimentally, four models of the jointed plain concrete pavement system were made, each model consists of two slabs of plain concrete that connected together across expansion by two dowel bars and the concrete slab were supported by the subgrade soil. Two variables were dealt with, the first is diameter of dowel bar (12, 16 and 20 mm) and the second is type of the subgrade soil, two types of soil were used which classified according to the (AASHTO): Type I (A-6) and type II (A-7-6). Experimental results showed that increasing dowel bar diameter from 12 mm to 20 mm
... Show MoreA Laced Reinforced Concrete (LRC) structural element comprises continuously inclined shear reinforcement in the form of lacing that connects the longitudinal reinforcements on both faces of the structural element. This study conducted a theoretical investigation of LRC deep beams to predict their behavior after exposure to fire and high temperatures. Four simply supported reinforced concrete beams of 1500 mm, 200 mm, and 240 mm length, width, and depth, respectively, were considered. The specimens were identical in terms of compressive strength ( 40 MPa) and steel reinforcement details. The same laced steel reinforcement ratio of 0.0035 was used. Three specimens were burned at variable durations and steady-state temperatures (one
... Show More