Preferred Language
Articles
/
joe-293
Modeling and Control of Fuel Cell Using Artificial Neural Networks
...Show More Authors

This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback control system using PID controller to stabilize the fuel cell voltage. Particle swarm optimization technique is used to tune the PID controller gains. The voltage error and hydrogen flow rate are input and the actuator of the PID controller respectively. Simulation results showed that using PID controller with proposed model of fuel cell can successfully improve system performance in tracking output voltage under different operating conditions.

 

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Advanced Intelligent Data Hiding Using Video Stego and Convolutional Neural Networks
...Show More Authors

Steganography is a technique of concealing secret data within other quotidian files of the same or different types. Hiding data has been essential to digital information security. This work aims to design a stego method that can effectively hide a message inside the images of the video file.  In this work, a video steganography model has been proposed through training a model to hiding video (or images) within another video using convolutional neural networks (CNN). By using a CNN in this approach, two main goals can be achieved for any steganographic methods which are, increasing security (hardness to observed and broken by used steganalysis program), this was achieved in this work as the weights and architecture are randomized. Thus,

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Nov 11 2019
Journal Name
Day 3 Wed, November 13, 2019
Drill Bit Selection Optimization Based on Rate of Penetration: Application of Artificial Neural Networks and Genetic Algorithms
...Show More Authors
Abstract<p>The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the</p> ... Show More
View Publication
Crossref (6)
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Classification of brain tumors using the multilayer perceptron artificial neural network
...Show More Authors

Information from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Nov 11 2019
Journal Name
Spe
Modeling Rate of Penetration using Artificial Intelligent System and Multiple Regression Analysis
...Show More Authors
Abstract<p>Over the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.</p><p>The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame</p> ... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Thu Apr 18 2019
Journal Name
Iraqi Journal Of Science
Fabrication and Study of Nano catalysis for Alkaline Fuel Cell
...Show More Authors

In this paper the manufacture of an alkaline fuel cell electrodes made upfrom a Nano mesh (Pt:NiO) catalyst has been studying , made from a Nano mesh (Pt:NiO ) catalyst. The general morphology of the samples is were imaged by using with the an Atomic Force Microscope (AFM) to determine the roughness of the prepared surface, it constructed from nanostructure with dimensions in order of 35 nm. The Structural characteristics were studied through the analysis of X-ray diffraction (XRD) of the prepared nanomaterial for determining the yielding phase;1. 72 volt was also obtained at 0.02 A/cm2 current density for an alkaline fuel cell.

View Publication Preview PDF
Publication Date
Wed Jan 13 2021
Journal Name
Iraqi Journal Of Science
Smart Routing Protocol Algorithm Using Fuzzy Artificial Neural Network OSPF
...Show More Authors

The OSPF cost is proportionally indicated the transmitting packet overhead through a certain interface and inversely proportional to the interface bandwidth. Thus, this cost may minimized by direct packet transmitting to the other side via various probable paths simultaneously. Logically, the minimum weight path is the optimum path. This paper propose a novel Fuzzy Artificial Neural Network to create Smart Routing Protocol Algorithm. Consequently, the Fuzzy Artificial Neural Network Overlap has been reduced from (0.883 ms) to (0.602 ms) at fuzzy membership 1.5 to 4.5 respectively. This indicated the transmission time is two-fold faster than the standard overlapping time (1.3 ms).

View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sun Apr 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Influence Activation Function in Approximate Periodic Functions Using Neural Networks
...Show More Authors

The aim of this paper is to design fast neural networks to approximate periodic functions, that is, design a fully connected networks contains links between all nodes in adjacent layers which can speed up the approximation times, reduce approximation failures, and increase possibility of obtaining the globally optimal approximation. We training suggested network by Levenberg-Marquardt training algorithm then speeding suggested networks by choosing most activation function (transfer function) which having a very fast convergence rate for reasonable size networks.             In all algorithms, the gradient of the performance function (energy function) is used to determine how to

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Fractional Hold-Up in RDC Column Using Artificial Neural Network
...Show More Authors

In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Using Artificial Neural Network Models For Forecasting & Comparison
...Show More Authors

The Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Trends Technological And Science ,engineering
Automated Sorting for Tomatoes using Artificial Neural Network
...Show More Authors

A .technology analysis image using crops agricultural of grading and sorting the test to conducted was experiment The device coupling the of sensor a with camera a and 75 * 75 * 50 dimensions with shape cube studio made-factory locally the study to studio the in taken were photos and ,)blue-green - red (lighting triple with equipped was studio The .used were neural artificial and technology processing image using maturity and quality ,damage of fruits the of characteristics external value the quality 0.92062, of was value regression the damage predict to used was network neural artificial The .network the using scheme regression a of means by 0.98654 of was regression the of maturity and 0.97981 of was regression the of .algorithm Marr

... Show More