Preferred Language
Articles
/
joe-2566
Comparison between Linear and Non-linear ANN Models for Predicting Water Quality Parameters at Tigris River
...Show More Authors

In this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters. the following (Biological Oxygen Demand( ), Phosphate,( ) Sulfate(), Nitrate( ), Calcium(Ca), Magnesium(Mg), Total Hardness(TH), Potassium(K), Sodium (Na), Chloride (CL), Total Dissolved Solids (TDS), Electric conductivity (EC), Alkalinity(ALK)). The ANN models tried herein were the Multisite- Multivariate ANN models (5-sites, 14 variables), five models were built, one for each of the five stations as the missing data station. The linear
ANN (traditional) models fail to make the prediction of all variables with high correlation coefficient simultaneously. Hence a non- linear input ANN model was developed herein and believed to be a new modification in ANN modeling. It was found that the ANNs have the ability to predict water level and water quality parameters at all the sites with a good degree of accuracy, the range of correlation coefficients obtained are (12.9%-97.2%) for linear models, while for this model with Non-linear terms, The range of correlation coefficients obtained is (71.8%-99.6%).

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficien

... Show More
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Multi – Linear in Multiple Nonparametric Regression , Detection and Treatment Using Simulation
...Show More Authors

             It is the regression analysis is the foundation stone of knowledge of statistics , which mostly depends on the ordinary least square method , but as is well known that the way the above mentioned her several conditions to operate accurately and the results can be unreliable , add to that the lack of certain conditions make it impossible to complete the work and analysis method and among those conditions are the multi-co linearity problem , and we are in the process of detected that problem between the independent variables using farrar –glauber test , in addition to the requirement linearity data and the lack of the condition last has been resorting to the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Index for the treated water from WTPs on Al-Karakh side of Baghdad City using Artificial Neural Network (ANN) technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For

... Show More
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Convergence Analysis for the Homotopy Perturbation Method for a Linear System of Mixed Volterra-Fredholm Integral Equations
...Show More Authors

           In this paper, the homotopy perturbation method (HPM) is presented for treating a linear system of second-kind mixed Volterra-Fredholm integral equations. The method is based on constructing the series whose summation is the solution of the considered system. Convergence of constructed series is discussed and its proof is given; also, the error estimation is obtained. Algorithm is suggested and applied on several examples and the results are computed by using MATLAB (R2015a). To show the accuracy of the results and the effectiveness of the method, the approximate solutions of some examples are compared with the exact solution by computing the absolute errors.

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Nov 12 2016
Journal Name
International Journal Of Mechanical Engineering And Technology (ijmet)
PERFORMANCE OF TWO-WAY NESTING TECHNIQUES FOR SHALLOW WATER MODELS
...Show More Authors

A new two-way nesting technique is presented for a multiple nested-grid ocean modelling system. The new technique uses explicit center finite difference and leapfrog schemes to exchange information between the different subcomponents of the nested-grid system. The performance of the different nesting techniques is compared, using two independent nested-grid modelling systems. In this paper, a new nesting algorithm is described and some preliminary results are demonstrated. The validity of the nesting method is shown in some problems for the depth averaged of 2D linear shallow water equation.

Publication Date
Sat Mar 01 2025
Journal Name
Geoenergy Science And Engineering
Empirical model for predicting slug-pseudo slug and slug-churn transitions of upward air/water flow
...Show More Authors

A pseudo-slug flow is a type of intermittent flow characterized by short, frothy, chaotic slugs that have a structure velocity lower than the mixture velocity and are not fully formed. It is essential to accurately estimate the transition from conventional slug (SL) flow to pseudo-slug (PSL) flow, and from SL to churn (CH), by precisely predicting the pressure losses. Recent research has showed that PSL and CH flows comprise a significant portion of the conventional flow pattern maps. This is particularly true in wellbores and pipelines with highly deviated large-diameter gas-condensate wellbores and pipelines. Several theoretical and experimental works studied the behavior of PSL and CH flows; however, few models have been suggested to pre

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sun Apr 01 2018
Journal Name
Construction And Building Materials
Linear viscous approach to predict rut depth in asphalt mixtures
...Show More Authors

Rutting in asphalt mixtures is a very common type of distress. It occurs due to the heavy load applied and slow movement of traffic. Rutting needs to be predicted to avoid major deformation to the pavement. A simple linear viscous method is used in this paper to predict the rutting in asphalt mixtures by using a multi-layer linear computer programme (BISAR). The material properties were derived from the Repeated Load Axial Test (RLAT) and represented by a strain-dependent axial viscosity. The axial viscosity was used in an incremental multi-layer linear viscous analysis to calculate the deformation rate during each increment, and therefore the overall development of rutting. The method has been applied for six mixtures and at different tem

... Show More
View Publication Preview PDF
Crossref (13)
Crossref
Publication Date
Thu Apr 04 2024
Journal Name
Journal Of Electrical Systems
AI-Driven Prediction of Average Per Capita GDP: Exploring Linear and Nonlinear Statistical Techniques
...Show More Authors

Average per capita GDP income is an important economic indicator. Economists use this term to determine the amount of progress or decline in the country's economy. It is also used to determine the order of countries and compare them with each other. Average per capita GDP income was first studied using the Time Series (Box Jenkins method), and the second is linear and non-linear regression; these methods are the most important and most commonly used statistical methods for forecasting because they are flexible and accurate in practice. The comparison is made to determine the best method between the two methods mentioned above using specific statistical criteria. The research found that the best approach is to build a model for predi

... Show More
View Publication
Crossref
Publication Date
Sat Jan 01 2005
Journal Name
Iraqi Journal Of Science
Comparison between Zernike moment and central moments for matching problem
...Show More Authors

Moment invariants have wide applications in image recognition since they were proposed.

Publication Date
Sun Mar 03 2013
Journal Name
Baghdad Science Journal
Naididae (Clitellata : Oligochaeta) and Aeolosomatidae ( Polychaeta : Aphanoneura) Species associated with aquatic plants in Tigris River/ Baghdad / Iraq
...Show More Authors

339 individuals , were sorted from 22 samples collected from three sites in Tigris River including , Al- Sarafiya district (S1), Al- Jaderiyah district (S2) and Al-Za'afaraniya district (S3), in addition to one site in the irrigation canal of the Al- Jaderiyah campus of the University of Baghdad (S4) , and in Al- Jeish canal(S5) east Baghdad. The sorting results revealed that the highest number of individuals of 102 was recorded at S4, whereas the lowest number of 24 individuals was recorded at S2. Regarding the sites, site S4 was the richest site with 30% of the total number represented 16 species, while each of S3 and S5 had 8 species only with 17.11% and 28.60% of the total individuals number respectively. The values of Jaccared Sim

... Show More
View Publication Preview PDF
Crossref (1)
Crossref