Preferred Language
Articles
/
exeEHo0BVTCNdQwCwBGK
Study of Optical Properties (Linear and Nonlinear) and Structures for CdS Thin Film Preparation in Spray Pyrolysis Technique

Publication Date
Tue Jun 12 2007
Journal Name
Iraqi Journal Of Laser
Nonlinear Optical Properties of CdS Thin Film Nanoparticles Using z-Scan Technique

In the present work, a z-scan technique was used to study the nonlinear optical properties, represented by the nonlinear refractive index and nonlinear absorption coefficients of nanoparticles cadmium sulfide thin film. The sample was prepared by the chemical bath deposition method. Several testing were done including, x-ray, transmission and thickness of thin film. z-Scan experiment was performed at two wavelengths (1064 nm and 532 nm) and different energies. The results showed the effect of self-focusing in the material at higher intensities, which evaluated n2 to be (0.11-0.16) cm2/GW. The effect of two-photon absorption was studied, which evaluated β to be (24-106) cm/GW. In addition, the optical limiting behavior has been studied.

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 05 2017
Journal Name
Baghdad Science Journal
Preparation and study of the structural and optical properties of Bi2S3 thin films by Spray pyrolysis method

In this research Bi2S3 thin films have been prepared on glass substrates using chemical spray pyrolysis method at substrate temperature (300oC) and molarity (0.015) mol. Structural and optical properties of the thin films above have been studied; XRD analysis demonstrated that the Bi2S3 films are polycrystalline with (031) orientation and with Orthorhombic structure. The optical properties were studied using the spectral of the absorbance and transmission of films in wavelength ranging (300-1100) nm. The study showed that the films have high transmission within the range of the visible spectrum. Also absorption coefficient, extinction coefficient and the optical energy gap (Eg) was calculated, found that the film have direct ener

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study Influence of Substrate Temperature on Optical Properties of CdS Thin Films Prepared by Chemical Spray pyrolysis

This study aims to prepare Cadmium Sulphide (CdS) thin films using thermal Chemical Spray Pyrolysis (CSP) on glass of different temperatures substrate from cadmium nitrate solution. Constant thickness was (430 ± 20 nm) and the effect of substrate temperature on the optical properties of prepared thin films.

Optical properties have been studied from transmittance and absorbance spectral within wavelengths range (360 - 900 nm). The results show that all the prepared films have a direct electron transitions and optical energy gap between (2.31-2.44 eV). They also show that the transmittance and optical energy gap of films prepared from nitrate solution increase with increasing of substrate temperature, then transmittance start do

... Show More
Crossref (5)
Crossref
View Publication Preview PDF
Publication Date
Sun Sep 06 2009
Journal Name
Baghdad Science Journal
Study of some structural , optical , Electrical Properties of CdS thin films deposited by chemical Spray Pyrolysis Method

In this research we prepared CdS thin films by Spray pyrolysis method on a glass substrates and we study its structural , optical , electrical properties .The result of (X-Ray ) diffraction showed that all thin films have a polycrystalline structure , The relation of the transmission as a function of wavelength for the CdS films had been studied , The investigated of direct energy gap of the CdS its value is (2.83 eV). In Hall effect measurement of the CdS we find the charge carriers is p – type and Hall coefficient 1157.33(cm3/c) ,Hall mobility 6.77(cm2/v.s)

Crossref
View Publication Preview PDF
Publication Date
Sat Jun 01 2013
Journal Name
Int. J. Nanoelectronics And Materials
Preview PDF
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Structural and Optical Properties of Cobalt-Doped Zinc Oxide Thin Films Prepared By Spray Pyrolysis Technique

Undoped and Co-doped zinc oxide (CZO) thin films have been prepared by spray pyrolysis technique using solution of zinc acetate and cobalt chloride. The effect of Co dopants on structural and optical properties has been investigated. The films were found to exhibit maximum transmittance (~90%) and low absorbance. The structural properties of the deposited films were examined by x-ray diffraction (XRD). These films, deposited on glass substrates at (400? C), have a polycrystalline texture with a wurtzite hexagonal structure, and the grain size was decreased with increasing Co concentration, and no change was observed in lattice constants while the optical band gap decreased from (3.18-3.02) eV for direct allowed transition. Other parameters

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue May 01 2012
Journal Name
Iraqi Journal Of Physics
Studying the optical properties of ( Cr2O3:I ) thin films prepared by spray pyrolysis technique

Undoped and Iodine (I)–doped chrome oxide (Cr2O3)thin films have been prepared by chemical spray pyrolysis technique at substrate temperatures(773K) on glass substrate. Absorbance and transmittance spectra have been recorded as a function of wavelength in the range (340-800 nm) in order to study the optical properties such as reflectance, Energy gap of allowed direct transition, extinction coefficient refractive index, and dielectric constant in real and imagery parts all as a function of wavelength. It was found that all the investigated parameters affect by the doping ratios.

View Publication Preview PDF
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
Annealing Effect on Some Optical Properties of Cr2O3 Thin Films Prepared by Spray Pyrolysis Technique

Cr2O3 thin films have been prepared by spray pyrolysis on a glass substrate. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity were expected. It was found that all these parameters increase as the annealing temperature increased to 550°C.

Crossref
View Publication Preview PDF
Publication Date
Mon May 08 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Optical Properties of SnS2 Thin films Prepared By Chemical Spray Pyrolysis

 Thin films of tin disulphide SnS2 with different thicknesses (2500,4000,5000)A0 have been prepared by chemical spray pyrolises technique on substrate of glass with temperature (603)K .  The effect of thickness on the optical properties of SnS2 has been studied.the optical  study that includes the absorptance and transmittance spectra in the wavelength range (300900)nm demonstrated that the value of absorption coefficient (α) ) was greater than (104 cm-1) the  electronic transitions at the fundamental absorption edge were of the indirect kind whether allowed and forbidden . Absorption edge shift slightly towards higher wave  length.The value of energy gaps (Eg) for all the films prepared are decreased with inc

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
A Study of the Structural and Optical Properties of SnS:F prepared by chemical spray pyrolysis technique

Thin films of pure tin mono-sulfide SnS and tin mono-sulfide for (1,2,3,4)% fluorine SnS:F with Thicknesses of (0.85 ±0.05) ?m and (0.45±0.05) ?m respectively were prepared by chemical spray pyrolysis technique. the effect of doping of F on structural and optical properties has been studied. X-Ray diffraction analysis showed that the prepared films were polycrystalline with orthorhombic structure. It was found that doping increased the intensity of diffraction peaks. Optical properties of all samples were studied by recording the absorption and transmission spectrum in range of wave lengths (300-900) nm. The optical energy gap for direct forbidden transi

... Show More
Crossref
View Publication Preview PDF