Scheduling considered being one of the most fundamental and essential bases of the project management. Several methods are used for project scheduling such as CPM, PERT and GERT. Since too many uncertainties are involved in methods for estimating the duration and cost of activities, these methods lack the capability of modeling practical projects. Although schedules can be developed for construction projects at early stage, there is always a possibility for unexpected material or technical shortages during construction stage. The objective of this research is to build a fuzzy mathematical model including time cost tradeoff and resource constraints analysis to be applied concurrently. The proposed model has been formulated using fuzzy theory combining CPM computations, time-cost trade off analysis and resource constraint. MATLAB software has been adopted to perform ranking process, for each case, that
facilitates obtaining the optimum solution. This research infers that it is possible to perform time-cost trade off analysis with resource restriction simultaneously, which ensures achieving scheduling optimum solution reducing the effort and the time when performing these techniques in succession using traditional methods.
In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between the met
... Show MoreIn this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
This study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended appro
... Show MoreOne of the most important elements of achieving food security is livestock, which is an essential element in the agricultural sector, and is one of the state support sectors. Animal production (sheep) ranked an important position in this sector due to the economic advantages that are available when rearing. Moreover, the success and development of sheep breeding depend on several factors, including financial return and achieving profitability. The study aims to identify the phenomenon size of random slaughter as a problem, which spread in Baghdad and its causes and the factors that influencing its development. As well as, the possibility of applying the idea of amobile slaughterhouse to reduce this phenomen
... Show MorePurpose: The main objective of this paper is, to determine the optimal no. of technicians’ men in a workshop crew of an Industrial System. Theoretical framework: The purpose of applying these tools is to explore their ability to reduce costs and improvements that can be obtained in the process of providing services to the end customer. Design/methodology/approach: The literature structure review was built from analyzing 12 of scientific papers and books, from web sciences and the Elsevier database. The papers were analyzed from descriptive, methodologic, and citation characteristics. Finding: By applying the equation model of the paper, the optimal no. of technician men in the crew of the workshop can be determined when
... Show MoreThe majority of real-world problems involve not only finding the optimal solution, but also this solution must satisfy one or more constraints. Differential evolution (DE) algorithm with constraints handling has been proposed to solve one of the most fundamental problems in cellular network design. This proposed method has been applied to solve the radio network planning (RNP) in the forthcoming 5G Long Term Evolution (5G LTE) wireless cellular network, that satisfies both deployment cost and energy savings by reducing the number of deployed micro base stations (BSs) in an area of interest. Practically, this has been implemented using constrained strategy that must guarantee good coverage for the users as well. Three differential evolution
... Show MoreSoftware cost management is a significant feature of project management. As such, it needs to be employed in a project or line of work. Software cost management is integral to software development failures, which, in turn, cause software failure. Thus, it is imperative that software development professionals develop their cost management skills to deliver successful software projects. The aim of this study is to examine the impact of cost management success factors with project management factors and three agile methodologies – Extreme Programming (XP), Scrum and Kanban methodologies which are used in the Pakistani software industry. To determine the results, the researchers applied quantitative approach through an extensive survey on
... Show More