Electrocardiogram (ECG) is an important physiological signal for cardiac disease diagnosis. With the increasing use of modern electrocardiogram monitoring devices that generate vast amount of data requiring huge storage capacity. In order to decrease storage costs or make ECG signals suitable and ready for transmission through common communication channels, the ECG data
volume must be reduced. So an effective data compression method is required. This paper presents an efficient technique for the compression of ECG signals. In this technique, different transforms have been used to compress the ECG signals. At first, a 1-D ECG data was segmented and aligned to a 2-D data array, then 2-D mixed transform was implemented to compress the ECG data in the 2-
D form. The compression algorithms were implemented and tested using multiwavelet, wavelet and slantlet transforms to form the proposed method based on mixed transforms. Then vector quantization technique was employed to extract the mixed transform coefficients. Some selected records from MIT/BIH arrhythmia database were tested contrastively and the performance of the
proposed methods was analyzed and evaluated using MATLAB package. Simulation results showed that the proposed methods gave a high compression ratio (CR) for the ECG signals comparing with other available methods. For example, the compression of one record (record 100) yielded CR of 24.4 associated with percent root mean square difference (PRD) of 2.56% was achieved.
The Electrocardiogram records the heart's electrical signals. It is a practice; a painless diagnostic procedure used to rapidly diagnose and monitor heart problems. The ECG is an easy, noninvasive method for diagnosing various common heart conditions. Due to its unique advantages that other humans do not share, in addition to the fact that the heart's electrical activity may be easily detected from the body's surface, security is another area of concern. On this basis, it has become apparent that there are essential steps of pre-processing to deal with data of an electrical nature, signals, and prepare them for use in Biometric systems. Since it depends on the structure and function of the heart, it can be utilized as a biometric attribute
... Show MoreA number of compression schemes were put forward to achieve high compression factors with high image quality at a low computational time. In this paper, a combined transform coding scheme is proposed which is based on discrete wavelet (DWT) and discrete cosine (DCT) transforms with an added new enhancement method, which is the sliding run length encoding (SRLE) technique, to further improve compression. The advantages of the wavelet and the discrete cosine transforms were utilized to encode the image. This first step involves transforming the color components of the image from RGB to YUV planes to acquire the advantage of the existing spectral correlation and consequently gaining more compression. DWT is then applied to the Y, U and V col
... Show MoreHuge number of medical images are generated and needs for more storage capacity and bandwidth for transferring over the networks. Hybrid DWT-DCT compression algorithm is applied to compress the medical images by exploiting the features of both techniques. Discrete Wavelet Transform (DWT) coding is applied to image YCbCr color model which decompose image bands into four subbands (LL, HL, LH and HH). The LL subband is transformed into low and high frequency components using Discrete Cosine Transform (DCT) to be quantize by scalar quantization that was applied on all image bands, the quantization parameters where reduced by half for the luminance band while it is the same for the chrominance bands to preserve the image quality, the zig
... Show MoreElectrocardiography (ECG or EKG) is the process of recording the electrical activity of the heart over a period of time using electrodes placed on the skin. The main idea is how to detect activity of the heart from skin that appears in video without using electrodes. This paper, proposes an algorithm that works on analyzing video frames to detect heartbeats from tiny changes that happen in a skin color luminance (brightness) and then using them to amplifying heartbeat and drawing ECG. The results show that the heartbeat was detected and amplified and ECG was drawing from any part of the human body in different situations and from different video.
This paper is concerned with introducing and studying the first new approximation operators using mixed degree system and second new approximation operators using mixed degree system which are the core concept in this paper. In addition, the approximations of graphs using the operators first lower and first upper are accurate then the approximations obtained by using the operators second lower and second upper sincefirst accuracy less then second accuracy. For this reason, we study in detail the properties of second lower and second upper in this paper. Furthermore, we summarize the results for the properties of approximation operators second lower and second upper when the graph G is arbitrary, serial 1, serial 2, reflexive, symmetric, tra
... Show MoreThe secure data transmission over internet is achieved using Steganography. It is the art and science of concealing information in unremarkable cover media so as not to arouse an observer’s suspicion. In this paper the color cover image is divided into equally four parts, for each part select one channel from each part( Red, or Green, or Blue), choosing one of these channel depending on the high color ratio in that part. The chosen part is decomposing into four parts {LL, HL, LH, HH} by using discrete wavelet transform. The hiding image is divided into four part n*n then apply DCT on each part. Finally the four DCT coefficient parts embedding in four high frequency sub-bands {HH} in
... Show MoreThis article presents a polynomial-based image compression scheme, which consists of using the color model (YUV) to represent color contents and using two-dimensional polynomial coding (first-order) with variable block size according to correlation between neighbor pixels. The residual part of the polynomial for all bands is analyzed into two parts, most important (big) part, and least important (small) parts. Due to the significant subjective importance of the big group; lossless compression (based on Run-Length spatial coding) is used to represent it. Furthermore, a lossy compression system scheme is utilized to approximately represent the small group; it is based on an error-limited adaptive coding system and using the transform codin
... Show MoreFractal image compression depends on representing an image using affine transformations. The main concern for researches in the discipline of fractal image compression (FIC) algorithm is to decrease encoding time needed to compress image data. The basic technique is that each portion of the image is similar to other portions of the same image. In this process, there are many models that were developed. The presence of fractals was initially noticed and handled using Iterated Function System (IFS); that is used for encoding images. In this paper, a review of fractal image compression is discussed with its variants along with other techniques. A summarized review of contributions is achieved to determine the fulfillment of fractal ima
... Show MoreIn this paper, we will present proposed enhance process of image compression by using RLE algorithm. This proposed yield to decrease the size of compressing image, but the original method used primarily for compressing a binary images [1].Which will yield increasing the size of an original image mostly when used for color images. The test of an enhanced algorithm is performed on sample consists of ten BMP 24-bit true color images, building an application by using visual basic 6.0 to show the size after and before compression process and computing the compression ratio for RLE and for the enhanced RLE algorithm
Fractal image compression gives some desirable properties like fast decoding image, and very good rate-distortion curves, but suffers from a high encoding time. In fractal image compression a partitioning of the image into ranges is required. In this work, we introduced good partitioning process by means of merge approach, since some ranges are connected to the others. This paper presents a method to reduce the encoding time of this technique by reducing the number of range blocks based on the computing the statistical measures between them . Experimental results on standard images show that the proposed method yields minimize (decrease) the encoding time and remain the quality results passable visually.