In this study, dead and live anaerobic biomass was used in biosorption of Pb(II), Cr(III) and Cd(II) ions from a synthetic wastewater. The biosorption was investigated by batch adsorption experiments. It was found that, the biosorption capacities were significantly affected by biosorbent dosage. The process follows Langmuir isotherm (regression coefficient 0.995, 0.99 and 0.987 for Pb(II), Cr(III) and Cd(II) ions, respectively, onto dead anaerobic biomass) model with uniform distribution over the biomass surface. The experimental uptake capacity was 51.56, 29.2 and 28 mg/g for Pb(II), Cr(III) and Cd(II), respectively, onto dead anaerobic biomass, compared with 35, 13.6 and 11.8 mg/g for Pb(II), Cr(III) and Cd(II), respectively, onto live anaerobic biomass. The percentage reductions of live compared with dead anaerobic biomass in uptake capacity were 32.3, 53.4 and 57.8 for Pb(II), Cr(III) and Cd(II), respectively. The results indicated that, the dead anaerobic biomass is suitable as an efficient biosorbent for the removal of Pb(II), Cr(III) and Cd(II) ions from wastewater.
BACKGROUND: Febrile neutropenia occurs in more than 80% of patients with hematological malignances specially after chemotherapy cycles and an infectious source is identified in approximately 20–30%. Various bacterial, viral, and fungal pathogen contribute to the development of neutropenic fever and without prompt antibiotic therapy mortality rate can be as high as 70%. AIM: The objective of the study was to document the current sites of infection in patients with febrile neutropenia in hematological ward in Baghdad Teaching Hospital, the microorganisms and antibiotic susceptibly in culture positive cases and mortality rate in 1 week and 4 weeks after episode of fever. PATIENTS AND METHODS: One hundred cases of febrile neutrop
... Show MoreThe skull is one of the largest bones in the body. It is classified into flat bones that maintain the important organic structures; which are the brain, eyes, and tongue. The skull is a strong support for preserving these organs but they are various according to the type of animals and the environments in which they live and the nature of their nutrition. There are many differences among living organisms in terms of the bones in the skull, their difference or disappearance and their length in the shape of the head. The samples were taken from the scientific storage in the Iraq Natural History Research Center and Museum; Cape hare Lepus capensis (Linnaeus, 1758) and Red fox Vulpes vulpes (Linnaeus, 1758) and the study was conducted o
... Show MoreThe skull is one of the largest bones in the body. It is classified into flat bones that maintain the important organic structures; which are the brain, eyes, and tongue. The skull is a strong support for preserving these organs but they are various according to the type of animals and the environments in which they live and the nature of their nutrition. There are many differences among living organisms in terms of the bones in the skull, their difference or disappearance and their length in the shape of the head. The samples were taken from the scientific storage in the Iraq Natural History Research Center and Museum; Cape hare Lepus capensis (Linnaeus, 1758) and Red fox Vulpes vulpes (Linnaeus, 1758) and the study was conducted o
... Show MoreTwo different approaches, univariate and multivariate (simplex method), have been used to obtain the optimum conditions for the quantitative Spectrophotometric determination of Eu3+ using Solochrome violet RS (3-Hydroxy-4-(2-hydroxy phenyl azo) naphthalene -1sulfonic acid) (SVRS) as a chromogenic reagent. The investigation shows that Eu3+ ion forms a wine-red complex with SVRS in alkaline buffer solution having a maximum absorbance at 464 nm against reagent blank. Calibration graphs obtained under univariate and simplex were found to be linear in the range of (0.30-8.0) µg/ml with detection limit 0.061µg/ml and molar absorptivity of 9877.66 L/mol.cm and (0.40-10.0)µg/ml with
... Show MoreThe thermal evaporation technique was used to prepare the Ni-Cr films with a thickness of 200 nm and a rate of deposition of 0.22nm/Sec. The annealing was performed at 373 and 473 K. The structural and optical analyses of the grown layers were achieved and XRD patterns showed amorphous structure transferred to polycrystalline for film annealed at 373 and 473 K. AFM analysis showed that the surface of Ni-Cr films is homogenous and the average roughness, optical energy gap and absorption coefficient were increased with increasing annealing temperature (Ta).
CdSe/CdS Core/shell nanostructures were prepared through the chemical synthesis method. XRD ,FESEM and TEM investigations confirmed the formation of core/shell structure for the sample. The AFM measurement was employed to reveal the morphology of the prepared thin films. Optical characterizations of the quantum dots were done by UV-visible and photoluminescence spectra. It was found that the quantum dots prepared has good optical properties. Due to the presence of shell coating on core CdSe, the energy gap of the core/shell nanomaterial were increased from 2.2 to 2.3eV. The resulted QDs are a promising candidate for photovoltaic and biosensor applications.
A new complex of Cr(UI) has been prepared. The kinetics and eqailibrium study of the substitution reaction for the complex Trans KfCr(ox)z(H 0)2].3l--h0 {T I }, with 4-aminoantipyrine {AAP}, bave been per£Qrm d in aqueous media at .(pH. = 4.9, 5.6 and 6.0) (!!?0.4M NaN03). Activation pararrieters for the reac(ions are {Eat= l.89l kCal
mor 1 , l:t=89.29 kCal mo1"1  
... Show More