The thermal and electrical performance of different designs of air based hybrid photovoltaic/thermal collectors is investigated experimentally and theoretically. The circulating air is used to cool PV panels and to collect the absorbed energy to improve their performance. Four different collectors have been designed, manufactured and instrumented namely; double PV panels without cooling (model I), single duct double pass collector (model II), double duct single pass (model III), and single duct single pass (model IV) . Each collector consists of: channel duct, glass cover, axial fan to circulate air and two PV panel in parallel connection. The temperature of the upper and lower surfaces of PV panels, air temperature, air flow rate, air pressure drop, wind speed, solar radiation and ambient temperature were measured. The power produced by solar cells is measured also. A theoretical model has been developed for the collector model IV based on energy balance principle. The prediction of the thermal and hydraulic performance was obtained for the fourth model of PV/T collector by developing a Matlab computer program to solve the numerical model. The experimental results show that the combined efficiency of model III is higher than that of models II and IV. The pressure drop of model III is less than that of models I and IV, by (43.67% and 49%). The average percentage error between the theoretical and experimental results was 9.67%.
Two- dimensional numerical simulations are carried out to study the elements of observing a Dirac point source and a Dirac binary system. The essential features of this simulation are demonstrated in terms of the point spread function and the modulation transfer function. Two mathematical equations have been extracted to present, firstly the relationship between the radius of optical telescope and the distance between the central frequency and cut-off frequency of the optical telescope, secondly the relationship between the radius of the optical telescope and the average frequency components of the modulation transfer function.
Intrusion detection system is an imperative role in increasing security and decreasing the harm of the computer security system and information system when using of network. It observes different events in a network or system to decide occurring an intrusion or not and it is used to make strategic decision, security purposes and analyzing directions. This paper describes host based intrusion detection system architecture for DDoS attack, which intelligently detects the intrusion periodically and dynamically by evaluating the intruder group respective to the present node with its neighbors. We analyze a dependable dataset named CICIDS 2017 that contains benign and DDoS attack network flows, which meets certifiable criteria and is ope
... Show MoreThis paper is focused on orthogonal function approximation technique FAT-based adaptive backstepping control of a geared DC motor coupled with a rotational mechanical component. It is assumed that all parameters of the actuator are unknown including the torque-current constant (i.e., unknown input coefficient) and hence a control system with three motor control modes is proposed: 1) motor torque control mode, 2) motor current control mode, and 3) motor voltage control mode. The proposed control algorithm is a powerful tool to control a dynamic system with an unknown input coefficient. Each uncertain parameter/term is represented by a linear combination of weighting and orthogonal basis function vectors. Chebyshev polynomial is used
... Show MoreA new, Simple, sensitive and accurate spectrophotometric methods have been developed for the determination of sulfamethoxazole (SMZ) drug in pure and dosage forms. This method based on the reaction of sulfamethoxazole (SMZ) with 1,2-napthoquinone-4-sulphonic acid (NQS) to form Nalkylamono naphthoquinone by replacement of the sulphonate group of the naphthoquinone sulphonic acid by an amino group. The colored chromogen shows absorption maximum at 460 nm. The optimum conditions of condensation reaction forms were investigated by (1) univariable method, by optimizing the effect of experimental variables (different bases, reagent concentration, borax concentration and reaction time), (2) central composite design (CCD) including the effect of
... Show MoreBackground: Animal bite is one of the public health problems all over the world, especially in poor countries. Animal bites have an impact on human health due to rabies disease, which is a viral transmitted disease from animal to human with a high mortality rate.
Objective: To determine the epidemiological characteristics of animal bite cases by person, time, and place.
Method: Descriptive cross sectional study was done by reviewing cases caused by animal bites., Data including the demographic characteristics of age, gender, occupation, site of bite, and attending health institutions searching treatment were all included.
Results: There were 11600 animal bite cases. Most of bites caused by stray dogs 11577(99.8%), and the males
Twelve compounds containing a sulphur- or oxygen-based heterocyclic core, 1,3- oxazole or 1,3-thiazole ring with hydroxy, methoxy and methyl terminal substituent, were synthesized and characterized. The molecular structures of these compounds were performed by elemental analysis and different spectroscopic tequniques. The liquid crystalline behaviors were studied by using hot-stage optical polarizing microscopy and differential scanning calorimetry. All compounds of 1,4- disubstituted benzene core with oxazole ring display liquid crystalline smectic A (SmA) mesophase. The compounds of 1,3- and 1,4-disubstituted benzene core with thiazole ring exhibit exclusively enantiotropic nematic liquid crystal phases.