Free cement refractory concrete is a type of refractory concrete with replacing alumina cement by bonding materials such as white kaolin, red kaolin and fumed silica. The free cement refractory concrete used in many applications like Petrochemicals, iron furnaces and cement production industries. The research clarifies the effect of steel fibers with two types crimped steel fibers and hooked steel
fibers with percentages 0.5%, 1% and 1.5% by volume from weight of bauxite aggregates. The additions of steel fibers with two types gave good properties in high temperatures where the specimens keep the dimension without failure and the properties made the best. the percentage of increasing for thermal conductivity was 44% for 1.5% crimped fibers and 42.8% for 1.5% hooked end fibers and the percentage increasing in bulk density of free cement refractory concrete was 30% for 1.5% crimped fibers and 27% for 15% hooked end fibers . From this study can be concluded that the best types of steel fibers which used in free cement refractory concrete is the crimped type with percentage 1.5%.
The present work divided into two parts, first the experimental side which included the
measuring of the first natural frequency for the notched and unnotched cantilever composite beams
which consisted of four symmetrical layers and made of Kevlar- epoxy reinforced. A numerical
study covers the effect of notches on the natural frequencies of the same specimen used in the
experimental part. The mathematical model for the beam contains two open edges on the upper
surface. The effect of the location of cracks relative to the restricted end, depth of cracks, volume
fraction of fibers and orientation of the fiber on the natural frequencies are explored. The results
were calculated using the known engineering program (ANSY
For the time being, the cold-formed sections are widely used due to their simple manufacturing and construction processes. To be feasible, the strength of cold-formed columns should be determined based on their post-buckling behavior. Post-buckling relations are cumbersome and need design aids similar to those of American Iron and Steel Institute (AISI) to be applicable. These design aids have been developed to sections and materials other than those available in the local market. Therefore, this paper tries to develop a general finite element model to simulate the postbuckling behavior of cold-formed steel columns. Shell element has been used to discretize the web, flanges, and lips of the column. A linear bucking analy
... Show MoreThe study was carried out in plant tissue culture laboratory, University of Baghdad during the period 2017-2019, as factorial experiment in complete randomized design, to study the effect of PEG at (0, 2, 4, 6 and 8%) on physiological and chemical changes in callus of three sunflower (Ishaqi 1, Aqmar and Al-haga) induced by the cultivation of the young stem in vitro under water stress. The content of callus cells of SOD, POD, CAT and APX enzymes as well as total dissolved carbohydrate were determined as indicators to determine the effect of PEG in callus tissue cells cultivated on medium equipped with the PEG concentrations. The results showed that cultivars were differs significantly, and A-haja variety was superior in increasing SOD to 12
... Show MoreThe aim of this work is to evaluate some mechanical and physical
properties (i.e. the impact strength, hardness, flexural strength,
thermal conductivity and diffusion coefficient) of
(epoxy/polyurethane) blend reinforced with nano silica powder (2%
wt.). Hand lay-up technique was used to manufacture the composite
and a magnetic stirrer for blending the components. Results showed
that water had affected the bending flexural strength and hardness,
while impact strength increased and thermal conductivity decreased.
In addition to the above mentioned tests, the diffusion coefficient
was calculated using Fick’s 2nd law.
Enhancing fatigue resistance in asphalt binders and mixtures is crucial for prolonging pavement lifespan and improving road performance. Recent advancements in nanotechnology have introduced various nanomaterials such as alumina (NA), carbon nanotubes (CNTs), and silica (NS) as potential asphalt modifiers. These materials possess unique properties that address challenges related to asphalt fatigue. However, their effectiveness depends on proper dispersion and mixing techniques. This review examines the mixing methods used for each nanomaterial to ensure uniform distribution within the asphalt matrix and maximize performance benefits. Recent research findings are synthesized to elucidate how these nanomaterials and their mixing proce
... Show MoreThe effect of Wood Flour addition to the gamma alumina powder used in the preparation of gamma alumina (ɤ-Al2O3) catalyst carrier extrudates on the pore volume and BET surface area physical properties was investigated. Two parameters which are size of wood flour particles and its quantity were studied. The sizes of wood flour particles used are 150 µm, 212 µm and 500 µm and the weight percentage added to the gamma alumina powder during the preparation of the extrudates are (1%, 3%, 5% and 10%). The results showed that the addition of wood flour to the gamma alumina powder in order to get gamma alumina extrudates used as catalyst carrier is one of the successful methods to improve the pore volume
... Show MoreThe effects of shot peening treatment (SPT) were studied at (10,20, and 30) minutes on the rotating bending fatigue behavior and the behavior of the alloy steel DIN 41Cr4 vibrations. The hardness test, tensile test, constant amplitude fatigue tests, and the vibration measurements were performed on samples with and without cracks at room temperature (RT), also, the fracture surface was examined and analyzed by a Scanning Electron Microscope (SEM). The results of the investigations, for example, Stress to Number of cycles to failure (S-N) curves, fatigue strength improvement factor of 5% to 10%, the decreasing percentage of maximum Fast Fourier Transform (FFT) acceleration of the shot-peened condition were compared to untr
... Show MoreThis paper studies the behavior of axially loaded RC columns which are confined with carbon fiber reinforced polymers’ sheet (CFRP) and steel jackets (SJ). The study is based on twelve axially loaded RC columns tested up to failure. It is divided into three schemes based on its strengthening type; each scheme has four columns. The main parameters in this study were the compressive strength of the concrete and steel reinforcement ratio. Furthermore, the results of the experimental test showed a substantial enhancement in the column's load-carrying capacity. When compared to the original columns, the CFRP sheet had a significant effect on improving the ductility of the column by increasing the axial deformation by about 59.2 to 95.7
... Show MoreThe using of recycled aggregates from construction and demolition waste (CDW) can preserve natural aggregate resources, reduce the demand for landfill, and contribute to a sustainable built environment. Concrete demolition waste has been proven to be an excellent source of aggregates for new concrete production. At a technical, economic, and environmental level, roller compacted concrete (RCC) applications benefit various civil construction projects. Roller Compacted Concrete (RCC) is a homogenous mixture that is best described as a zero-slump concrete placed with compacting equipment, uses in storage areas, dams, and most often as a basis for rigid pavements. The mix must be sufficiently dry to support
... Show More