Transient mixed convection heat transfer in a confined porous medium heated at periodic sinusoidal heat flux is investigated numerically in the present paper. The Poisson-type pressure equation, resulted from the substituting of the momentum Darcy equation in the continuity equation, was discretized by using finite volume technique. The energy equation was solved by a fully implicit control volume-based finite difference formulation for the diffusion terms with the use of the quadratic upstream interpolation for convective kinetics scheme to discretize the convective terms and the temperature values at the control volume faces. The numerical study covers a range of the hydrostatic pressure sinusoidal amplitude range and time period values of . Numerical results show that the pressure contours lines are influenced by hydrostatic head variation and not affected with the sinusoidal amplitude and time period variation. It is found that the average Nusselt number decreases with time and pressure head increasing and decreases periodically with time and amplitude increasing. The time averaged Nusselt number decreases with imposed sinusoidal amplitude and cycle time period increasing.
In this paper Volterra Runge-Kutta methods which include: method of order two and four will be applied to general nonlinear Volterra integral equations of the second kind. Moreover we study the convergent of the algorithms of Volterra Runge-Kutta methods. Finally, programs for each method are written in MATLAB language and a comparison between the two types has been made depending on the least square errors.
Chromium tanned leather wastes (CTLW) and vegetable tanned leather wastes (VTLW) were used as adsorbent materials to remove the Biebrich scarlet dye (BS), as an anionic dye from wastewater, using an adsorption method. The effects of various factors, such as weight of leather waste, time of shaking, and the starting concentration of Biebrich scarlet dye, temperature and pH were studied. It described the adsorption process using Langmuir and Freundlich isotherm models. The obtained results agreed well with the Langmuir model, and the maximum adsorption capacities of CTLW and VTLW were 73.5294 and 78.1250 mg.g⁻¹, respectively, suggesting a monolayer adsorption process. The adsorption kinetic was found to follow a pseudo-second-o
... Show MoreThe conjugate coefficient optimal is the very establishment of a variety of conjugate gradient methods. This paper proposes a new class coefficient of conjugate gradient (CG) methods for impulse noise removal, which is based on the quadratic model. Our proposed method ensures descent independent of the accuracy of the line search and it is globally convergent under some conditions, Numerical experiments are also presented for the impulse noise removal in images.
This work aim to study the effect of silver nanoparticles on fluorescence intensity of Coumarin 480 dye by using the sandwiches technique where AgNP layer had been separated from C480 layer by different type of materials such as silica, PMMA polymer and PVA polymer layer. Silver nanoparticles had been prepared by the chemical reduction method so the AgNP layer coating had been done by hot rotation liquid method. The optical properties of prepared samples had been tested by using UV-VIS absorption spectrophotometer and Fluorescence spectrophotometer. Morphology, average size and the structure of nanoparticles were estimated using AFM, SEM testes
The present work aims to study the effect of using an automatic thresholding technique to convert the features edges of the images to binary images in order to split the object from its background, where the features edges of the sampled images obtained from first-order edge detection operators (Roberts, Prewitt and Sobel) and second-order edge detection operators (Laplacian operators). The optimum automatic threshold are calculated using fast Otsu method. The study is applied on a personal image (Roben) and a satellite image to study the compatibility of this procedure with two different kinds of images. The obtained results are discussed.
Three new hydrazone derivatives of Etodolac were synthesized and evaluated for their anti-inflammatory activity by using egg white induced paw edema method. All the synthesized target compounds were characterized by CHN- microanalysis, FT-IR spectroscopy, and 1HNMR analysis. The synthesis of the target (P1-P3) compounds was accomplished following multistep reaction procedures. The synthesized target compounds were found to be active in reducing paw edema thickness and their anti-inflammatory effect was comparable to that of the standard (Etodolac).
Over the last few decades the mean field approach using selfconsistent
Haretree-Fock (HF) calculations with Skyrme effective
interactions have been found very satisfactory in reproducing
nuclear properties for both stable and unstable nuclei. They are
based on effective energy-density functional, often formulated in
terms of effective density-dependent nucleon–nucleon interactions.
In the present research, the SkM, SkM*, SI, SIII, SIV, T3, SLy4,
Skxs15, Skxs20 and Skxs25 Skyrme parameterizations have been
used within HF method to investigate some static and dynamic
nuclear ground state proprieties of 84-108Mo isotopes. In particular,
the binding energy, proton, neutron, mass and charge densities
In this paper the nuclear structure of some of Si-isotopes namely, 28,32,36,40Si have been studied by calculating the static ground state properties of these isotopes such as charge, proton, neutron and mass densities together with their associated rms radii, neutron skin thicknesses, binding energies, and charge form factors. In performing these investigations, the Skyrme-Hartree-Fock method has been used with different parameterizations; SkM*, S1, S3, SkM, and SkX. The effects of these different parameterizations on the above mentioned properties of the selected isotopes have also been studied so as to specify which of these parameterizations achieves the best agreement between calculated and experimental data. It can be ded
... Show MoreSoil bacteria play an interesting role in the reduction of Ag+ ions and the formation of silver nanoparticles (AgNPs), which may be a good source for nanoparticles and play a major role in nanotechnology applications. The concept of this project was to study the effects of these environmentally produced nanoparticles on the growth of some pathogenic bacteria. The environmental bacteria were isolated from soil, purified on broth cultures, and centrifuged, while the supernatant was extracted to detect its ability to convert silver nitrate to nanoparticles. The AgNPs was detected by Atomic Force Microscopy (AFM), while Granularity Cumulating Distribution (GCD) was employed to estimate the AgNPs sizes. The results showed the
... Show MoreNanoparticles produced by plants are preferred in the medical field for its safe and unpolluted product; it is also accepted as an ecofriendly, non-expensive, and non-toxic nanomaterial. In this study, silver nitrate was successfully used to produce silver nanoparticles (AgNPs) by the use extractsof 4 different latex-producing plants which belong to 2 families (Moraceae and Euphorbiaceae). The synthesis was proved by Atomic Force Microscopy (AFM).The sizes of the AgNP grains were estimated by Granularity Cumulating Distribution (GCD). The results revealed the production of AgNPs in different sizes of 103 and 82 nm using the Moraceae family and 77 and74nm using the Euphorbiaceae
... Show More