The conjugate coefficient optimal is the very establishment of a variety of conjugate gradient methods. This paper proposes a new class coefficient of conjugate gradient (CG) methods for impulse noise removal, which is based on the quadratic model. Our proposed method ensures descent independent of the accuracy of the line search and it is globally convergent under some conditions, Numerical experiments are also presented for the impulse noise removal in images.
Magnetic Resonance Imaging (MRI) is a medical indicative test utilized for taking images of the tissue points of interest of the human body. During image acquisition, MRI images can be damaged by many noise signals such as impulse noise. One reason for this noise may be a sharp or sudden disturbance in the image signal. The removal of impulse noise is one of the real difficulties. As of late, numerous image de-noising methods were produced for removing the impulse noise from images. Comparative analysis of known and modern methods of median filter family is presented in this paper. These filters can be categorized as follows: Standard Median Filter; Adaptive Median Filter; Progressive Switching Median Filter; Noise Adaptive Fuz
... Show MoreIn this paper, we suggest a descent modification of the conjugate gradient method which converges globally provided that the exact minimization condition is satisfied. Preliminary numerical experiments on some benchmark problems show that the method is efficient and promising.
The aim of this paper is to compare between classical and fuzzy filters for removing different types of noise in gray scale images. The processing used consists of three steps. First, different types of noise are added to the original image to produce a noisy image (with different noise ratios). Second, classical and fuzzy filters are used to filter the noisy image. Finally, comparing between resulting images depending on a quantitative measure called Peak Signal-to-Noise Ratio (PSNR) to determine the best filter in each case.
The image used in this paper is a 512 * 512 pixel and the size of all filters is a square window of size 3*3. Results indicate that fuzzy filters achieve varying successes in noise reduction in image compared to
In this paper, we proposed a modified Hestenes-Stiefel (HS) conjugate
gradient method. This achieves a high order accuracy in approximating the second
order curvature information of the objective function by utilizing the modified
secant condition which is proposed by Babaie-Kafaki [1], also we derive a nonquadratic
conjugate gradient model. The important property of the suggestion
method that is satisfy the descent property and global convergence independent of
the accuracy of the line search. In addition, we prove the global convergence under
some suitable conditions, and we reported the numerical results under these
conditions.
Ultrasound imaging has some problems with image properties output. These affects the specialist decision. Ultrasound noise type is the speckle noise which has a grainy pattern depending on the signal. There are two parts of this study. The first part is the enhancing of images with adaptive Weiner, Lee, Gamma and Frost filters with 3x3, 5x5, and 7x7 sliding windows. The evaluated process was achieved using signal to noise ratio (SNR), peak signal to noise ratio (PSNR), mean square error (MSE), and maximum difference (MD) criteria. The second part consists of simulating noise in a standard image (Lina image) by adding different percentage of speckle noise from 0.01 to 0.06. The supervised classification based minimum di
... Show MoreUltrasound imaging is often preferred over other medical imaging modalities because it is non-invasive, non-ionizing, and low-cost. However, the main weakness of medical ultrasound image is the poor quality of images, due to presence of speckle noise and blurring. Speckle is characteristic phenomenon in ultrasound images, which can be described as random multiplicative noise that occurrence is often undesirable, since it affects the tasks of human interpretation and diagnosis. Blurring is a form of bandwidth reduction of an ideal image owing to the imperfect image formation process. Image denoising involves processing of the image data to produce a visually high quality image. The denoising algorithms may be classified into two categorie
... Show MoreMost of the water pollutants with dyes are leftovers from industries, including textiles, wool and others. There are many ways to remove dyes such as sorption, oxidation, coagulation, filtration, and biodegradation, Chlorination, ozonation, chemical precipitation, adsorption, electrochemical processes, membrane approaches, and biological treatment are among the most widely used technologies for removing colors from wastewater. Dyes are divided into two types: natural dyes and synthetic dyes.
Image texture is an important part of many types of images, for example medical images. Texture Analysis is the technique that uses measurable features to categorize complex textures. The main goal is to extract discriminative features that are used in different pattern recognition applications and texture categorization. This paper investigates the extraction of most discriminative features for different texture images from the “Colored Brodatz” dataset using two types of image contrast measures, as well as using the statistical moments on five bands (red, green, blue, grey, and black). The Euclidean distance measure is used in the matching step to check the similarity degree. The proposed method was tested on 112 classes o
... Show MoreThis paper is concerned with studying the numerical solution for the discrete classical optimal control problem (NSDCOCP) governed by a variable coefficients nonlinear hyperbolic boundary value problem (VCNLHBVP). The DSCOCP is solved by using the Galerkin finite element method (GFEM) for the space variable and implicit finite difference scheme (GFEM-IFDS) for the time variable to get the NS for the discrete weak form (DWF) and for the discrete adjoint weak form (DSAWF) While, the gradient projection method (GRPM), also called the gradient method (GRM), or the Frank Wolfe method (FRM) are used to minimize the discrete cost function (DCF) to find the DSCOC. Within these three methods, the Armijo step option (ARMSO) or the optimal step opt
... Show More