Preferred Language
Articles
/
joe-2136
Mixed Convection in a Square Cavity Filled with Porous Medium with Bottom Wall Periodic Boundary Condition

Transient mixed convection heat transfer in a confined porous medium heated at periodic sinusoidal heat flux is investigated numerically in the present paper. The Poisson-type pressure equation, resulted from the substituting of the momentum Darcy equation in the continuity equation, was discretized by using finite volume technique. The energy equation was solved by a fully implicit control volume-based finite difference formulation for the diffusion terms with the use of the quadratic upstream interpolation for convective kinetics scheme to discretize the convective terms and the temperature values at the control volume faces. The numerical study covers a range of the hydrostatic  pressure sinusoidal  amplitude  range and  time  period  values  of . Numerical results show that the pressure contours lines are influenced by hydrostatic head variation and not affected with the sinusoidal amplitude and time period variation. It is found that the average Nusselt number decreases with time and pressure head increasing and decreases periodically with time and amplitude increasing. The time averaged Nusselt number decreases with imposed sinusoidal amplitude and cycle time period increasing.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Sep 01 2015
Journal Name
Journal Of Engineering
Mixed Convection Heat Transfer in a Vertical Saturated Concentric Annulus Packed with a Metallic Porous Media

Mixed convection heat transfer in a vertical concentric annulus packed with a metallic porous media and heated at a constant heat flux is experimentally investigated with water as the working fluid. A series of experiments have been carried out with a Rayleigh number range from Ra=122418.92 to 372579.31 and Reynolds number that based on the particles diameter of Red=14.62, 19.48 and 24.36. Under steady state condition, the measured data were collected and analyzed. Results show that the wall surface temperatures are affected by the imposed heat flux variation and Reynolds number variation. The variation of the local heat transfer coefficient and the mean Nusselt number are presented and analyzed. An empirical

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 15 2019
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Natural Convective Heat Transfer in an Inclined Open Porous Cavity with Non-Uniformly Heated Wall

Theoretical and experimental investigations of free convection through a cubic cavity with sinusoidal heat flux at bottom wall, the top wall is exposed to an outside ambient while the other walls are adiabatic saturated in porous medium had been approved in the present work. The range of Rayleigh number was and Darcy number values were . The theoretical part involved a numerical solution while the experimental part included a set of tests carried out to study the free convection heat transfer in a porous media (glass beads) for sinusoidal heat flux boundary condition. The investigation enclosed values of Rayleigh number (5845.6, 8801, 9456, 15034, 19188 and 22148) and angles of inclinations (0, 15, 30, 45 and 60 degree). The numerical an

... Show More
Publication Date
Tue Mar 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Numerical study of the mixed convection flow over a square cylinder

In this work, a numerical study is performed to predict the solution of two – dimensional, steady and laminar mixed convection flow over a square cylinder placed symmetrically in a vertical parallel plate. A finite difference method is employed to solve the governing differential equations, continuity, momentum, and energy equation balances. The solution is obtained for stream function, vorticity and temperature as dependent variables by iterative technique known as successive over relaxation. The flow and temperature patterns are obtained for Reynolds number and Grashof number at (Re= -50,50,100,-100) (positive or negative value refers to aidding or opposing buoyancy , +1 assisting flow, -1 opposing flow) and (102 to 105) , respective

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
NUMERICAL INVESTIGATION OF LAMINAR MIXED CONVECTION IN TROMBE WALL CHANNEL

The two dimensional steady, combined forced and natural convection in vertical channel is
investigated for laminar regime. To simulate the Trombe wall channel geometry properly, horizontal
inlet and exit segments have been added to the vertical channel. The vertical walls of the channel are
maintained at constant but different temperature while horizontal walls are insulated. A finite
difference method using up-wind differencing for the nonlinear convective terms, and central
differencing for the second order derivatives, is employed to solve the governing differential
equations for the mass, momentum, and energy balances. The solution is obtained for stream
function, vorticity and temperature as dependent variables

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Jan 04 2022
Journal Name
Iraqi Journal Of Science
Influence of MHD and Wall Properties on the Peristaltic Transport of a Williamson Fluid with Variable Viscosity Through Porous Medium

This paper concerns the peristaltic flow of a Williamson fluid with variable viscosity model through porous medium under combined effects of MHD and wall properties. The assumptions of Reynolds number and long wavelength is investigated. The flow is investigated in a wave frame of reference moving with velocity of the wave. The perturbation series in terms of the Weissenberg number (We <1) was used to obtain explicit forms for velocity field and stream function. The effects of thermal conductivity, Grashof number, Darcy number, magnet, rigidity, stiffness of the wall and viscous damping force parameters on velocity and stream function have been studied.

View Publication Preview PDF
Publication Date
Fri May 01 2015
Journal Name
Journal Of Engineering
Numerical Analysis of Fluid Flow and Heat Transfer by Forced Convection in Channel with one-sided Semicircular Sections and Filled with Porous Media

This research presents a numerical study to simulate the heat transfer by forced convection as a result of fluid flow inside channel’s with one-sided semicircular sections and fully filled with porous media. The study assumes that the fluid were Laminar , Steady , Incompressible and inlet Temperature was less than Isotherm temperature of a Semicircular sections .Finite difference techniques were used to present the governing equations (Momentum, Energy and Continuity). Elliptical Grid is Generated using Poisson’s equations . The Algebraic equations were solved numerically by using (LSOR (.This research studied the effect of changing the channel shapes on fluid flow and heat transfer  in two cases ,the first: cha

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 27 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Experimental study of natural convection heat transfer on an enclosure partially filled porous medium heated from below by constant heat flux

This study reports on natural convection heat transfer in a square enclosure of length (L=20 cm) with a saturated porous medium (solid glass beads) having same fluid (air) at lower horizontal layer and free air fill in the rest of the cavity's space. The experimental work has been performed under the effects of heating from bottom by constant heat flux q=150,300,450,600 W/m2 for four porous layers thickness Hp (2.5,5,7.5,1) cm and three heaters length δ(20,14,7) cm. The top enclosure wall was good insulated and the two side walls were symmetrically cooled at constant temperature. Four layers of porous media with small porosity, Rayleigh number range (60.354 - 241.41) and (Da) 3.025x10-8 has been investigated. The obtained data of temperatu

... Show More
Scopus Crossref
View Publication
Publication Date
Fri Feb 18 2022
Journal Name
Journal Of Engineering And Sustainable Development
CONJUGATE NATURAL CONVECTION IN A POROUS ENCLOSURE SANDWICHED BY FINITE WALLS AND SUBJECTED TO CONVECTION COOLING CONDITION

Steady conjugate natural convection heat transfers in a two-dimensional enclosure filled with fluid saturated porous medium is studied numerically. The two vertical boundaries of the enclosure are kept isothermally at same temperature, the horizontal upper wall is adiabatic, and the horizontal lower wall is partially heated. The Darcy extended Brinkman Forcheimer model is used as the momentum equation and Ansys Fluent software is utilized to solve the governing equations. Rayleigh number (1.38 ≤ Ra ≤ 2.32), Darcy number (3.9 * 10-8), the ratio of conjugate wall thickness to its height (0.025 ≤ W ≤ 0.1), heater length to the bottom wall ratio (1/4 ≤  ≤ 3/4) and inclination angle (0°, 30° and 60°) are the main consid

... Show More
Scopus Crossref
View Publication
Publication Date
Sun Feb 27 2022
Journal Name
Iraqi Journal Of Science
Linear and Non-Linear Stability Analysis for Thermal Convection in A Bidispersive Porous Medium with Thermal Non-Equilibrium Effects: Linear and non-linear stability analysis

     The linear instability and nonlinear stability analyses are performed for the model of bidispersive local thermal non-equilibrium flow. The effect of local thermal non-equilibrium on the onset of convection in a bidispersive porous medium of Darcy type is investigated.  The temperatures in the macropores and micropores are allowed to be different. The effects of various interaction parameters on the stability of the system are discussed. In particular, the effects of the porosity modified conductivity ratio parameters,  and , with the int

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Mechanical Engineering Research And Developments
Numerical Investigation of Natural Convection Heat Transfer in Partially Filled Porous Enclosure Subjected to Constant Heat

Steady natural convection in a square enclosure with wall length (L= 20 cm) partially filled by saturated porous medium with same fluid (lower layer) and air (upper layer) is investigated. The conceptual study of the achievements of the heat transfer is performed under effects of bottom heating by constant heat flux (q=150,300,450,600W/m2 ) for three heaters size (0.2,0.14,0.07)m with symmetrically cooling with constant temperature on two vertical walls and adiabatic top wall. The relevant filled studied parameters are four different porous medium heights (Hp=0.25L,0.5L, 0.75L, L), Darcey number (Da1) 3.025×10-8 and (Da2) 8.852×10-4 ) and Rayleigh number range (60.354 - 241.41), (1.304×106 – 5.2166×106 ) for Da1 and Da2 cases respecti

... Show More
Preview PDF