The improvement in Direction of Arrival (DOA) estimation when the received signals impinge on Active-Parasitic Antenna (APA) arrays will be studied in this work. An APA array consists of several active antennas; others are parasitic antennas. The responses to the received signals are measured at the loaded terminals of the active element. The terminals of the parasitic element are shorted. The effect of the received signals on the parasites, i.e., the induced short-circuit current, is mutually coupled to the active elements. Eigen decomposition of the covariance matrix of the measurements of the APA array generates a third subspace in addition to the traditional signal and noise subspaces generated by the all-active antenna receiving array. This additional subspace, the parasitic subspace, is accompanied by very small eigenvalues (approaching zero). Hence, a complete orthogonality between this subspace and the column space of the steering matrix of the array can be obtained. As a result, better resolution in estimating the DOA can be achieved. Several simulations in conjunction with the MUSIC algorithm, which have been conducted in this work, depict that the APA array outperforms the all-active antenna array as a direction finder, regardless of the size of the array, the number of active elements, or the number of measurement snapshots. Furthermore, super-resolution DOA estimation can be achieved when a subset of the parasitic subspace is used as if the measurement were noiseless. Also, the APA array contributes to very small RMSE values over a wide range of S/N of the received signals.