ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data set sub-division into training, testing and holdout data sub-sets, and different number of hidden nodes in the hidden layer. It is found that it is not necessary that the nearest station to the station under prediction has the highest effect; this may be attributed to the high differences in elevation between the stations. It can also found that the variance is not necessary has effect on the correlation coefficient obtained.
This paper presents a new design of a nonlinear multi-input multi-output PID neural controller of the active brake steering force and the active front steering angle for a 2-DOF vehicle model based on modified Elman recurrent neural. The goal of this work is to achieve the stability and to improve the vehicle dynamic’s performance through achieving the desired yaw rate and reducing the lateral velocity of the vehicle in a minimum time period for preventing the vehicle from slipping out the road curvature by using two active control actions: the front steering angle and the brake steering force. Bacterial forging optimization algorithm is used to adjust the parameters weights of the proposed controller. Simulation resul
... Show More<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope
... Show MoreLowpass spatial filters are adopted to match the noise statistics of the degradation seeking
good quality smoothed images. This study imply different size and shape of smoothing
windows. The study shows that using a window square frame shape gives good quality
smoothing and at the same time preserving a certain level of high frequency components in
comparsion with standard smoothing filters.
The increasing efficiency of the telecommunications network in the city contributes to the increase in spatial interaction between activities (to influence and mutual influence) This study is based on the idea that the upgrading of telephone services provided to citizens are done exclusively through the growth and development of all levels of the service using advanced technologies to know the problems and appropriate solutions in short time and less cost. Thus, crystallized the objectives of the study which was built for the importance of GIS in the planning of services in general, and infrastructure services, in particular, including telephone services, which is represent a point of contact between individuals on the one hand a
... Show MoreThe steady consumption of fish led many researchers to study it preferences over other foods, especially for radioactivity content. The specific activity concentration (S.A) of natural occurring radioactive materials (NORM) have been measured for Cyprinus carpio fishes collected from several industrial fishes' lakes located in Baghdad governorate using gamma spectroscopy doped with high purity germanium coaxial detector (HPGe). Thirteen fishes' samples were collected from industrial lakes, three samples were collected from cages, and two samples were collected from Trigger River. The last two types of samples were collected in order to compare the results with it. The measured overall averages of S.A for Ra-226, Th-232, and K-40 were 58.
... Show MoreThe Migration is one of the important dynamic population movement phenomena in population studies because of its great impact in changing many demographic characteristics between the region of origin and arrival. And the multiplicity of forms and types according to the different reasons for it and the motives that prompted the population to move, as well as the currents and their size are also different according to the different causes, and here there are many types of migration, and many of them have been studied at the local and regional levels, and as long as the population is in a continuous dynamic movement, other types of migration are generated. (Al Douri, 2015, 230) &nbs
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show More