ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data set sub-division into training, testing and holdout data sub-sets, and different number of hidden nodes in the hidden layer. It is found that it is not necessary that the nearest station to the station under prediction has the highest effect; this may be attributed to the high differences in elevation between the stations. It can also found that the variance is not necessary has effect on the correlation coefficient obtained.
Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreIn light of the development in computer science and modern technologies, the impersonation crime rate has increased. Consequently, face recognition technology and biometric systems have been employed for security purposes in a variety of applications including human-computer interaction, surveillance systems, etc. Building an advanced sophisticated model to tackle impersonation-related crimes is essential. This study proposes classification Machine Learning (ML) and Deep Learning (DL) models, utilizing Viola-Jones, Linear Discriminant Analysis (LDA), Mutual Information (MI), and Analysis of Variance (ANOVA) techniques. The two proposed facial classification systems are J48 with LDA feature extraction method as input, and a one-dimen
... Show MoreIn this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show MoreThis article proposes a new technique for determining the rate of contamination. First, a generative adversarial neural network (ANN) parallel processing technique is constructed and trained using real and secret images. Then, after the model is stabilized, the real image is passed to the generator. Finally, the generator creates an image that is visually similar to the secret image, thus achieving the same effect as the secret image transmission. Experimental results show that this technique has a good effect on the security of secret information transmission and increases the capacity of information hiding. The metric signal of noise, a structural similarity index measure, was used to determine the success of colour image-hiding t
... Show MoreUntreated municipal solid waste (MSW) release onto land is prevalent in developing countries. To reduce the high levels of harmful components in polluted soils, a proper evaluation of heavy metal concentrations in Erbil's Kani Qrzhala dump between August 2021 and February 2022 is required. The purpose of this research was to examine the impact of improper solid waste disposal on soil properties within a landfill by assessing the risks of contamination for eight heavy elements in two separate layers of the soil by using geoaccumulation index (I-geo) and pollution load index (PLI) supported. The ArcGIS software was employed to map the spatial distribution of heavy element pollution and potential ecological risks. The I-geo values in summe
... Show MoreKnowledge of permeability, which is the ability of rocks to transmit the fluid, is important for understanding the flow mechanisms in oil and gas reservoirs.
Permeability is best measured in the laboratory on cored rock taken from the reservoir. Coring is expensive and time-consuming in comparison to the electronic survey techniques most commonly used to gain information about permeability.
Yamama formation was chosen, to predict the permeability by using FZI method. Yamama Formation is the main lower cretaceous carbonate reservoir in southern of Iraq. This formation is made up mainly of limestone. Yamama formation was deposited on a gradually rising basin floor. The digenesis of Yamama sediments is very important due to its direct
Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A
... Show MoreMany oil and gas processes, including oil recovery, oil transportation, and petroleum processing, are negatively impacted by the precipitation and deposition of asphaltene. Screening methods for determining the stability of asphaltenes in crude oil have been developed due to the high cost of remediating asphaltene deposition in crude oil production and processing. The colloidal instability index, the Asphaltene-resin ratio, the De Boer plot, and the modified colloidal instability index were used to predict the stability of asphaltene in crude oil in this study. The screening approaches were investigated in detail, as done for the experimental results obtained from them. The factors regulating the asphaltene precipitation are different fr
... Show MoreScientific development has occupied a prominent place in the field of diagnosis, far from traditional procedures. Scientific progress and the development of cities have imposed diseases that have spread due to this development, perhaps the most prominent of which is diabetes for accurate diagnosis without examining blood samples and using image analysis by comparing two images of the affected person for no less than a period. Less than ten years ago they used artificial intelligence programs to analyze and prove the validity of this study by collecting samples of infected people and healthy people using one of the Python program libraries, which is (Open-CV) specialized in measuring changes to the human face, through which we can infer the
... Show MoreThe city of Samawah is one of the most important cities which emerged in the poverty area within the poverty map produced by the Ministry of Planning, despite being an important provincial centre. Although it has great development potentials, it was neglected for more than 50 years,. This dereliction has caused a series of negative accumulations at the urban levels (environmental, social and economic). Therefore, the basic idea of this research is to detect part of these challenges that are preventing growth and development of the city. The methodology of the research is to extrapolate the reality with the analysis of the results, data and environmental impact assessment of the projec