Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor the removal of brain sections can be addressed in the subsequent steps, resulting in an unfixed mistake during further analysis. Therefore, accurate skull stripping is necessary for neuroimaging diagnostic systems. This paper proposes a system based on deep learning and Image processing, an innovative method for converting a pre-trained model into another type of pre-trainer using pre-processing operations and the CLAHE filter as a critical phase. The global IBSR data set was used as a test and training set. For the system's efficacy, work was performed based on the principle of three dimensions and three sections of MR images and two-dimensional images, and the results were 99.9% accurate.
The study presents the modification of the Broyden-Flecher-Goldfarb-Shanno (BFGS) update (H-Version) based on the determinant property of inverse of Hessian matrix (second derivative of the objective function), via updating of the vector s ( the difference between the next solution and the current solution), such that the determinant of the next inverse of Hessian matrix is equal to the determinant of the current inverse of Hessian matrix at every iteration. Moreover, the sequence of inverse of Hessian matrix generated by the method would never approach a near-singular matrix, such that the program would never break before the minimum value of the objective function is obtained. Moreover, the new modification of BFGS update (H-vers
... Show MoreTransportation and distribution are the most important elements in the work system for any company, which are of great importance in the success of the chain work. Al-Rabee factory is one of the largest ice cream factories in Iraq and it is considered one of the most productive and diversified factories with products where its products cover most areas of the capital Baghdad, however, it lacks a distribution system based on scientific and mathematical methods to work in the transportation and distribution processes, moreover, these processes need a set of important data that cannot in any way be separated from the reality of fuzziness industrial environment in Iraq, which led to use the fuzzy sets theory to reduce the levels of uncertainty.
... Show MoreIn this paper, a simulation of the electrical performance for Pentacene-based top-contact bottom-gate (TCBG) Organic Field-Effect Transistors (OFET) model with Polymethyl methacrylate (PMMA) and silicon nitride (Si3N4) as gate dielectrics was studied. The effects of gate dielectrics thickness on the device performance were investigated. The thickness of the two gate dielectric materials was in the range of 100-200nm to maintain a large current density and stable performance. MATLAB simulation demonstrated for model simulation results in terms of output and transfer characteristics for drain current and the transconductance. The layer thickness of 200nm may result in gate leakage current points to the requirement of optimizing the t
... Show MoreDue to the urgent need to develop technologies for continuous glucose monitoring in diabetes individuals, poten tial research has been applied by invoking the microwave tech niques. Therefore, this work presents a novel technique based on a single port microwave circuit, antenna structure, based on Metamaterial (MTM) transmission line defected patch for sensing the blood glucose level in noninvasive process. For that, the proposed antenna is invoked to measure the blood glu cose through the field leakages penetrated to the human blood through the skin. The proposed sensor is constructed from a closed loop connected to an interdigital capacitor to magnify the electric field fringing at the patch center. The proposed an tenna sensor i
... Show MorePhotonic crystal fiber interferometers are widely used for sensing applications. In this work, solid core-Photonic crystal fiber based on Mach-Zehnder modal interferometer for sensing refractive index was presented. The general structure of sensor applied by splicing short lengths of PCF in both sides with conventional single mode fiber (SMF-28). To apply modal interferometer theory; collapsing technique based on fusion splicing used to excite higher order modes (LP01 and LP11). Laser diode (1550 nm) has been used as a pump light source. Where a high sensitive optical spectrum analyzer (OSA) was used to monitor and record the transmitted. The experimental work shows that the interference spectrum of Photonic crystal fiber interferometer
... Show MoreFree Space Optical (FSO) technology offers highly directional, high bandwidth communication channels. This technology can provide fiber-like data rate over short distances. In order to improve security associated with data transmission in FSO networks, a secure communication method based on chaotic technique is presented. In this paper, we have turned our focus on a specific class of piece wise linear one-dimensional chaotic maps. Simulation results indicate that this approach has the advantage of possessing excellent correlation property. In this paper we examine the security vulnerabilities of single FSO links and propose a solution to this problem by implementing the chaotic signal generator “reconfigurable tent map”. As synchronizat
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show More 
        