Preferred Language
Articles
/
joe-1981
Face-based Gender Classification Using Deep Learning Model
...Show More Authors

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer learning, a powerful deep learning technique that can be effectively employed to Face gender classification using the Alex-Net architecture. The performance evaluation of the proposed gender classification model encompassed three datasets: the LFW dataset, which contained 1,200 facial images. The Faces94 dataset contained 400 facial images, and the family dataset had 400. The Transfer Learning with the Alex-Net model achieved an accuracy of 98.77% on the LFW dataset.

Furthermore, the model attained an accuracy rate of 100% on both the Faces94 and family datasets. Thus, the proposed system emphasizes the significance of employing pre-processing techniques and transfer learning with the Alex-Net model. These methods contribute to more accurate results in gender classification. Where, the results achieved by applying image contrast enhancement techniques, such as HE and CLAHE, were compared. CLAHE achieved the best facial classification accuracy compared to HE.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Journal Of Engineering
An Empirical Investigation on Snort NIDS versus Supervised Machine Learning Classifiers
...Show More Authors

With the vast usage of network services, Security became an important issue for all network types. Various techniques emerged to grant network security; among them is Network Intrusion Detection System (NIDS). Many extant NIDSs actively work against various intrusions, but there are still a number of performance issues including high false alarm rates, and numerous undetected attacks. To keep up with these attacks, some of the academic researchers turned towards machine learning (ML) techniques to create software that automatically predict intrusive and abnormal traffic, another approach is to utilize ML algorithms in enhancing Traditional NIDSs which is a more feasible solution since they are widely spread. To upgrade t

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Mar 01 2022
Journal Name
Asian Journal Of Applied Sciences
Comparison between Expert Systems, Machine Learning, and Big Data: An Overview
...Show More Authors

Today, the science of artificial intelligence has become one of the most important sciences in creating intelligent computer programs that simulate the human mind. The goal of artificial intelligence in the medical field is to assist doctors and health care workers in diagnosing diseases and clinical treatment, reducing the rate of medical error, and saving lives of citizens. The main and widely used technologies are expert systems, machine learning and big data. In the article, a brief overview of the three mentioned techniques will be provided to make it easier for readers to understand these techniques and their importance.

View Publication
Crossref (2)
Crossref
Publication Date
Sun Feb 10 2019
Journal Name
Journal Of The College Of Education For Women
Brain Dominance Learning Styles for Secondary School Students Distinguished and Ordinary
...Show More Authors

The current research aims at detecting Brain Dominance Learning Styles distinguished
and ordinary secondary school students (males and females).The researcher adopted Torrance
measure, known as ‘the style of your learning and thinking to measure Brain Dominance
Learning Styles’, the codified version of Joseph Qitami (1986); picture (a). The researcher
verified the standard properties of tool. The final application sample was 352 distinguished
and ordinary students; 176 distinguished male and female students and 176 ordinary male and
female students at the scientific fifth level of secondary school from schools in the province of
Baghdad, AL- KarKh Education Directorates in the First and Second . and who have been

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 28 2019
Journal Name
Journal Of The College Of Education For Women
Mindfulness and Its Relation to Self Regulated Learning Among University Students
...Show More Authors

Mindfulness is considered a process to draw an image of the active event and to creat new social varieties which leaves the individuals open to modernity and to be sensitive towards the context. in contrast, when individuals act with less attention, they need to be more determined concerning the varieties and events of the past . and as a result , they become unaware of the characteristics that creat the individual condition .The problem of the current study is represented in asking about the nature of the possible relationship between mindfulness and self-regulated learning within specific demographic frame of an importantsocial category represented in university students where no previous researches nor theories have agreed on the natu

... Show More
View Publication Preview PDF
Publication Date
Wed Aug 31 2022
Journal Name
Al-kindy College Medical Journal
Cervical Pain Related to Position of the Neck during E-Learning
...Show More Authors

Background: During the pandemic, Corona virus forced many people, especially students, to spend more time than before on the computer and smartphone to study and communicate. The poor posture of the body may have worse effect on its body parts , most of which is the cervical spine (forward head posture).

Objective: To assess the incidence of neck pain and the associated factors among undergraduate medical students related to position during E learning

Subjects and Methods: Cross-sectional study was conducted among medical students in three Iraqi universities during 2021. The sample size w

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Aug 31 2022
Journal Name
Al-kindy College Medical Journal
Cervical Pain Related to Position of the Neck during E-Learning
...Show More Authors

Background: During the pandemic, Corona virus forced many people, especially students, to spend more time than before on the computer and smartphone to study and communicate. The poor posture of the body may have worse effect on its body parts , most of which is the cervical spine (forward head posture). Objective: To assess the incidence of neck pain and the associated factors among undergraduate medical students related to position during E learning Subjects and Methods: Cross-sectional study was conducted among medical students in three Iraqi universities during 2021. The sample size was 152. Online questionnaire by Google forms sampling method were used to collect the data which was analysed using SPSS 25. Results: The perce

... Show More
Preview PDF
Crossref
Publication Date
Sat Aug 10 2024
Journal Name
Cureus
Machine Learning and Vision: Advancing the Frontiers of Diabetic Cataract Management
...Show More Authors

View Publication
Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Al-khwarizmi Engineering Journal
Comparative Transfer Learning Models for End-to-End Self-Driving Car
...Show More Authors

Self-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Journal Of Engineering
Intelligent Dust Monitoring System Based on IoT
...Show More Authors

Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system

... Show More
View Publication
Crossref (1)
Crossref