Preferred Language
Articles
/
joe-1981
Face-based Gender Classification Using Deep Learning Model

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer learning, a powerful deep learning technique that can be effectively employed to Face gender classification using the Alex-Net architecture. The performance evaluation of the proposed gender classification model encompassed three datasets: the LFW dataset, which contained 1,200 facial images. The Faces94 dataset contained 400 facial images, and the family dataset had 400. The Transfer Learning with the Alex-Net model achieved an accuracy of 98.77% on the LFW dataset.

Furthermore, the model attained an accuracy rate of 100% on both the Faces94 and family datasets. Thus, the proposed system emphasizes the significance of employing pre-processing techniques and transfer learning with the Alex-Net model. These methods contribute to more accurate results in gender classification. Where, the results achieved by applying image contrast enhancement techniques, such as HE and CLAHE, were compared. CLAHE achieved the best facial classification accuracy compared to HE.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Increasing validation accuracy of a face mask detection by new deep learning model-based classification

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
Scopus (4)
Crossref (4)
Scopus Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science (ijeecs)
Increasing validation accuracy of a face mask detection by new deep learning model-based classification

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
Crossref (4)
Crossref
Publication Date
Mon Oct 03 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Oil spill classification based on satellite image using deep learning techniques

 An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Information And Optimization Sciences
Crossref (1)
Clarivate Crossref
View Publication
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Indoor/Outdoor Deep Learning Based Image Classification for Object Recognition Applications

With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se

... Show More
Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jun 30 2023
Journal Name
Iraqi Journal Of Science
Satellite Image Classification using Spectral Signature and Deep Learning

    When images are customized to identify changes that have occurred using techniques such as spectral signature, which can be used to extract features, they can be of great value. In this paper, it was proposed to use the spectral signature to extract information from satellite images and then classify them into four categories. Here it is based on a set of data from the Kaggle satellite imagery website that represents different categories such as clouds, deserts, water, and green areas. After preprocessing these images, the data is transformed into a spectral signature using the Fast Fourier Transform (FFT) algorithm. Then the data of each image is reduced by selecting the top 20 features and transforming them from a two-dimensiona

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Arabic Speech Classification Method Based on Padding and Deep Learning Neural Network

Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to

... Show More
Scopus (15)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
A Survey on Arabic Text Classification Using Deep and Machine Learning Algorithms

    Text categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accu

... Show More
Scopus (8)
Crossref (4)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
An Automated Classification of Mammals and Reptiles Animal Classes Using Deep Learning

Detection and classification of animals is a major challenge that is facing the researchers. There are five classes of vertebrate animals, namely the Mammals, Amphibians, Reptiles, Birds, and Fish, and each type includes many thousands of different animals. In this paper, we propose a new model based on the training of deep convolutional neural networks (CNN) to detect and classify two classes of vertebrate animals (Mammals and Reptiles). Deep CNNs are the state of the art in image recognition and are known for their high learning capacity, accuracy, and robustness to typical object recognition challenges. The dataset of this system contains 6000 images, including 4800 images for training. The proposed algorithm was tested by using 1200

... Show More
Scopus (5)
Crossref (2)
Scopus Crossref
View Publication Preview PDF