Various speech enhancement Algorithms (SEA) have been developed in the last few decades. Each algorithm has its advantages and disadvantages because the speech signal is affected by environmental situations. Distortion of speech results in the loss of important features that make this signal challenging to understand. SEA aims to improve the intelligibility and quality of speech that different types of noise have degraded. In most applications, quality improvement is highly desirable as it can reduce listener fatigue, especially when the listener is exposed to high noise levels for extended periods (e.g., manufacturing). SEA reduces or suppresses the background noise to some degree, sometimes called noise suppression algorithms. In this research, the design of SEA based on different speech models (Laplacian model or Gaussian model) has been implemented using two types of discrete transforms, which are Discrete Tchebichef Transform and Discrete Tchebichef-Krawtchouk Transforms. The proposed estimator consists of dual stages of a wiener filter that can effectively estimate the clean speech signal. The evaluation measures' results show the proposed SEA's ability to enhance the noisy speech signal based on a comparison with other types of speech models and a self-comparison based on different types and levels of noise. The presented algorithm's improvements ratio regarding the average SNRseq are 1.96, 2.12, and 2.03 for Buccaneer, White, and Pink noise, respectively.
Let R be an associative ring with identity and let M be right R-module M is called μ-semi hollow module if every finitely generated submodule of M is μ-small submodule of M The purpose of this paper is to give some properties of μ-semi hollow module. Also, we gives conditions under, which the direct sum of μ-semi hollow modules is μ-semi hollow. An R-module is said has a projective μ-cover if there exists an epimorphism
The soft sets were known since 1999, and because of their wide applications and their great flexibility to solve the problems, we used these concepts to define new types of soft limit points, that we called soft turning points.Finally, we used these points to define new types of soft separation axioms and we study their properties.
Let R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes.
Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that
A new class of generalized open sets in a topological space, called G-open sets, is introduced and studied. This class contains all semi-open, preopen, b-open and semi-preopen sets. It is proved that the topology generated by G-open sets contains the topology generated by preopen,b-open and semi-preopen sets respectively.
In this paper mildly-regular topological space was introduced via the concept of mildly g-open sets. Many properties of mildly - regular space are investigated and the interactions between mildly-regular space and certain types of topological spaces are considered. Also the concept of strong mildly-regular space was introduced and a main theorem on this space was proved.
In this paper, the concept of semi-?-open set will be used to define a new kind of strongly connectedness on a topological subspace namely "semi-?-connectedness". Moreover, we prove that semi-?-connectedness property is a topological property and give an example to show that semi-?-connectedness property is not a hereditary property. Also, we prove thate semi-?-irresolute image of a semi-?-connected space is a semi-?-connected space.